
1.  Introduction
Records of magnetic fields have played a key role in understanding a diversity of processes related to tectonics 
and paleoclimate (Tauxe, 2010), evolution of the protoplanetary disk and planet formation (Weiss et al., 2021), 
planetary thermal evolution (Lapotre et al., 2020), and habitability (Ehlmann et al., 2016). The rock record of 
past magnetic fields is in the form of natural remanent magnetization, the semi-permanent statistical alignment of 
electron spins in grains of ferromagnetic minerals that can be preserved over geological timescales. This magnet-
ization may be acquired when the ferromagnetic minerals cool, crystallize, or experience a transient increase in 
pressure. The field of paleomagnetism seeks to read such records to study the history of planetary processes.

Remanent magnetization is an emergent property representing the aggregate behavior of numerous individual 
electrons. In particular, it has been shown that statistically meaningful constraints on the strength and direction 
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of ancient magnetic fields require measuring the net magnetic moment 
(volume integral of magnetization) of 10 4 or more magnetic grains (Berndt 
et al., 2016; Kirschvink, 1981; Lima & Weiss, 2016). However, magnetiza-
tion cannot be directly measured except within a very thin external layer of 
a geological sample. Instead, the magnetization or the net magnetic moment 
is typically estimated from measurements of the external magnetic field 
produced by a magnetized rock sample. The size of the volume in which 
the net moment is measured is a critical part of the analysis, given that a 
volume that is too small may fail to include a statistically sufficient number 
of magnetic grains to capture the paleomagnetic field direction and strength, 
whereas a volume that is too large may include regions in a geological sample 
with disparate geological histories and/or heterogeneous magnetic record-
ing properties. Furthermore, for rocks that are weakly magnetized, a larger 
volume may be necessary to ensure a sufficiently large number of grains to 
be detectable with a magnetometer.

Typical magnetometers (e.g., spinner magnetometers and superconducting 
rock magnetometers) obtain net moment estimates for the whole volume of 
the sample through mathematical relationships that involve approximations 
associated with specific sample shapes, magnetization patterns, and detec-
tor geometries (Collinson, 1983). However, such relationships are often not 
directly applicable to magnetometers that map magnetic fields on a planar 
grid at high spatial resolution (e.g., scanning magnetic microscopes, quan-
tum diamond microscopes, and magneto-optical imaging systems) owing to 
differences in measurement configuration and in the spatial scales involved.

For such magnetometers, one possible approach consists of first comput-
ing the inversion of magnetic data for the entire magnetization distribution 
within the sample (henceforth denoted “full inversion”) and then integrating 
the solution to calculate the net magnetic moment, either in a sub-volume 
or over the whole sample. While this approach is more general and allows 
for the reconstruction of extended sources, this type of reconstruction 

unfortunately requires carefully chosen regularization strategies and selection of regularization parameters, and 
possibly additional analyses to constrain physical characteristics of the sources, to overcome ill-posedness and 
obtain physically meaningful solutions [e.g., (Egli & Heller, 2000; Lima et al., 2013; Myre et al., 2019; Pastore 
et al., 2018, 2021, 2022; Usui et al., 2012; Weiss et al., 2007)]. In practice, taking this approach is often too labo-
rious and time-consuming for processing complete demagnetization sequences of geological samples, with no 
guarantee of obtaining accurate results for samples containing spatially extended and nonuniform magnetization 
patterns except in a handful of special cases [e.g., unidirectional or unidimensional magnetizations (Baratchart 
et al., 2013)]. Thus, for sources that are reasonably localized and exhibit a consistent geological history, other 
approaches that are tailored to such source characteristics may often be more advantageous for estimating net 
moment.

In particular, when the sample's dimensions are roughly comparable to the distance from the magnetic sensor to 
the sample, h′, or when field maps exhibit features that are sufficiently spatially isolated from those of adjacent 
sources, it is possible to estimate net moment by fitting a localized source model to the measured data (Lima & 
Weiss, 2016) (Figure 1). In its simplest form, this involves fitting a single magnetic dipole (i.e., three-component 
vector dipole moment and its location) to magnetic maps that are dominantly dipolar in behavior. The ration-
ale for this approach is two-fold: (a) uniformly magnetized samples with certain geometries produce external 
magnetic fields that are either exactly dipolar (e.g., sphere) or are approximately dipolar at relatively short 
distances (e.g., cubes and cylinders with unity diameter-height ratio) (Collinson, 1983), and (b) for sufficiently 
large sensor-to-sample distances compared to the sample's dimensions or to the size of an isolated magnetic 
feature, the field produced is approximately dipolar.

Whereas the single-dipole fitting approach has been successfully used in many applications (Borlina 
et al., 2020, 2021; Fu et al., 2014, 2017, 2020; Weiss et al., 2007, 2008, 2018), there still are many samples for which 

Figure 1.  Schematic drawing depicting the main geometrical quantities 
involved. A sample with dimensions dx, dy, and dz is located below the 
measurement plane z = H where data are collected. The origin of the spherical 
harmonic multipole expansion is located at (x0, y0, z0), which is iteratively 
adjusted to attain the best representation of the data with the multipole model. 
The distance between the origin of the expansion and the measurement plane 
is defined as h. The sensor-to-sample distance, h’, is defined as the distance 
between the top of the sample and the measurement plane. A reference sphere 
[radius a, centered at (x0, y0, z0)] for the multipole expansion encloses the 
sample. Planar mapping areas of finite size located solely above the sample 
result in the polar angle θ spanning a somewhat limited interval 𝐴𝐴 0 ≤ 𝜃𝜃 ≤ 𝛼𝛼 , 
where 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴∕2 , compared to spherical data collected around the sample, 
for which 𝐴𝐴 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋 . (α is the largest value that the polar angle θ assumes 
for any point lying within the mapping area.) The evaluation of multipoles 
on these planar mapping areas make spherical harmonics of the same order 
but different degree become somewhat similar, resulting in corresponding 
multipole components that are much alike, as seen in Figure 2.
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such a model does not yield high-accuracy estimates for net moment, particularly when small sensor-to-sample 
distances relative to the physical size of the source are involved. One way to ameliorate this issue consists of 
upward-continuing the field map to a greater equivalent sensor-to-sample distance so as to decrease the influence 
of high-order source terms (Fu et al., 2020). However, this strategy has limitations set by the size of the mapping 
area and magnetic noise, each of which introduce errors in the upward continued magnetic data and may lead to 
inaccurate moment estimates [see Fu et al. (2020) and Text S1 in Supporting Information S1].

In view of this, increasing the complexity of the source model while avoiding solving a full inversion for magneti-
zation can often be advantageous. An appealing approach consists of adding higher order multipoles (quadrupole, 

Figure 2.  Synthetic source distribution (Source A—see Table 2) and its recovered decomposition into a multipole series truncated at degree 8. (a) Simulated map of Bz 
of Source A with a sensor-to-sample distance of 25 μm. (b–e) Multipole components for degrees 1 (b), 2 (c), 3 (d), and 8 (e) are shown (field units in μT). Notice that, 
in the planar setting, there is remarkable similarity (except for possible sign changes) of multipole components of the same order m but different degree n, such as the 
first three components in each multipole. For each map in (b–e), the corresponding coefficient in the spherical harmonic multipole expansion is indicated.
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octupole, hexadecapole, and so forth) to the dipole model given that multipole expansions of the magnetostatic 
field can approximate arbitrarily well the field produced by a finite magnetic source outside a sphere enclosing 
this source and therefore improve over single-dipole fits. In fact, multipoles can be interpreted as an infinite 
collection of point sources in an arbitrarily small region centered around a reference point (the origin of the 
multipole expansion) that exactly reproduces the observed magnetic field (Wikswo & Swinney, 1985). Although 
these individual point sources very rarely correspond to the actual magnetization distribution within a magnetic 
material producing the measured magnetic field, they possess useful mathematical properties and can sometimes 
be related to physical quantities of interest [see, for instance, Cortes-Ortuno et al. (2021, 2022) for an application 
of low-order multipoles to constrain the internal magnetization structure of magnetic grains analyzed with micro-
magnetic tomography]. Two drawbacks of multipole expansions are that (a) multipoles with orders higher than 
that of a dipole are strongly dependent on the location of the origin, making their physical interpretation chal-
lenging (Lowes, 1994), and (b) multipoles are inefficient for representing extended sources, especially those with 
asymmetrical dimensions, because a very large number of terms is required to adequately reproduce the magnetic 
field of such source configurations. Nevertheless, they allow us to invert much more complex field maps for net 
moment than a single-dipole model does, thus significantly expanding the suite of geological samples that can be 
effectively analyzed using high-resolution magnetometry.

Spherical harmonic expansions are intricately related to multipole expansions given that they provide a mini-
mal, non-redundant series of multipole components that represent solutions to Laplace's equation (i.e., harmonic 
functions) in spherical domains (Wikswo & Swinney, 1984). In particular, spherical harmonics are functions 
defined on a sphere and constitute an orthogonal basis for twice-differentiable spherical functions (Courant & 
Hilbert, 1991). Spherical harmonic multipole expansions, which contain a radial term, can be used to represent 
harmonic functions in the whole space outside a reference sphere 𝐴𝐴 𝐴𝐴 = 𝑎𝑎 encompassing the sources.

The magnetic field outside a reference sphere of radius, a, enclosing all magnetic sources can be represented as 
the gradient of a scalar potential, V,

⃖⃖⃗𝐵𝐵 = −𝜇𝜇0∇𝑉𝑉 𝑉� (1)

where 𝐴𝐴 𝐴𝐴0 is the magnetic permeability in vacuum and we follow the convention used in physics for the magnetic 
scalar potential (Jackson, 1999). The potential V satisfies Laplace's equation 𝐴𝐴 ∇2

𝑉𝑉 = 0 whose solution for 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 
can be expressed as the spherical harmonic multipole expansion:

𝑉𝑉 (𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = 𝑎𝑎

∞
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+1
𝑛𝑛
∑
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(𝑔𝑔𝑚𝑚
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𝑚𝑚

𝑛𝑛 (𝜃𝜃),� (2)

where 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 denote the radial distance, polar angle and azimuthal angle, respectively, following the International 
Organization for Standardization (ISO) convention, a is the radius of the reference sphere (units of meters), 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑛𝑛  
and 𝐴𝐴 𝐴

𝑚𝑚

𝑛𝑛  are the Gauss coefficients (units of T), and 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑛𝑛 (𝜃𝜃) is the associated Legendre polynomial of order m and 
degree n normalized according to Schmidt's scheme (also called the Schmidt quasi-normalized function of order 
m and degree n).

Very importantly, the coefficients of the dipole term (n = 1) in a multipole expansion are the components of 
the net magnetic moment of the underlying magnetization distribution. While this may appear trivial, in general 
expansions using different basis functions (e.g., rectangular harmonics, spherical cap harmonics, and Taylor 
expansions) will not have the property of concentrating net moment information in just the first three coefficients 
[e.g., (Wikswo & Swinney, 1984)]. Moreover, in magnetostatics, the dipole term is invariant with respect to the 
placement of the origin of the multipole expansion, which is expected given that the net moment is a physical 
quantity that must not depend on a particular choice for origin. More generally, the first nonzero term in a multi-
pole expansion is translation-invariant (Raab, & de Lange, 2005). In electrostatics, the monopole term (i.e., net 
electric charge) is the translation-invariant term. Therefore, for spherical magnetic potential (or field) data, one 
could obtain the net magnetic moment by directly computing the spherical harmonic integral formulas for the 
three dipole coefficients independently (Butkov, 1968):

𝑔𝑔
0

1
=

3𝑅𝑅2

𝑎𝑎3

𝜋𝜋

∫
0

𝑉𝑉 (𝑅𝑅𝑅 𝑅𝑅𝑅 𝑅𝑅)sin 𝜃𝜃 𝜃𝜃𝜃𝜃𝜃� (3)
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where R is the radius of the sphere where magnetic data are available.

A fundamental difference that arises when applying spherical harmonic multipole expansions in a planar setting is 
that restrictions of spherical harmonics to the plane where magnetic field data are measured are no longer orthogonal 
in that subspace. However, such restrictions still constitute a set of (non-orthogonal) basis functions for restrictions (to 
the same plane) of the magnetic field of sources encompassed by the reference sphere. Therefore, one cannot retrieve 
coefficients of the expansion independently by integrating the planar magnetic data against elements of the basis [i.e., 
computing the orthogonal projections of the data onto the individual elements of the basis via inner products, as in 
Equations 3–5 above]. Instead, a system of linear equations must be solved to find all coefficients simultaneously. 
Clearly, the multipole expansion must be truncated at a certain degree for this approach to be computationally feasible.

In other words, for planar magnetic field data, computation of the dipole term coefficients is no longer decoupled 
from the computation of higher order terms in the spherical harmonic multipole expansion. In this case, the coef-
ficients in a truncated multipole expansion are typically found by solving the abovementioned system of linear 
equations via least-squares methods, which is often nontrivial. In particular, some of the restrictions of spherical 
harmonics basis functions to the plane are somewhat similar (Figure 2) owing to the fact that the polar angle θ 
does not take any values outside the interval 𝐴𝐴 0 ≤ 𝜃𝜃 ≤ 𝛼𝛼 in this case, where 𝐴𝐴 𝐴𝐴 𝐴

𝜋𝜋

2
 is set by the size of the mapping 

area and represents the maximum angle between the vertical axis and a vector representing a point on the edge of 
the mapping area. Adding to this, the large variation in the magnitude of the coefficients coupled with sampling 
in the space of (noisy) magnetic field data make it a numerically delicate problem, requiring regularization of this 
discrete ill-posed inverse problem. [An in-depth discussion about the ill-posedness of estimating net magnetic 
moment from planar magnetic data in general can be found in Baratchart et al. (2019)].

Importantly, whereas the orthogonality properties of spherical harmonic multipole expansions ensure that higher 
degree terms all have zero net magnetic moment, these terms nonetheless affect the computation of the coeffi-
cients of the dipole term. That is to say, the dipole term coefficients found via least-squares using a spherical 
harmonic expansion truncated at the dipole term will be, in general, different than those found using a spherical 
harmonic multipole expansion truncated at a higher multipole. This stems from the fact that, for non-dipolar 
magnetization, the magnetic field produced by a higher degree model will be much closer to the observed field 
than that produced by a lower degree model, thus yielding lower residuals. Hence, the computation of the dipole 
term will be less influenced by an attempt to reproduce complex features in the field map with lower degree  terms, 
as higher-order multipoles in the expansion will be used instead to better approximate those features. Owing to 
the ill-posedness of this inverse problem, better reproduction of the observed field map does not necessarily trans-
late into more accurate net moment estimates. Nevertheless, a general trend exists between the degree at which 
the spherical harmonic multipole expansion is truncated (model degree) and the accuracy in estimating the net 
moment in the noiseless case. (In fact, this may be surmised from approximation-theoretic considerations, which 
are outside the scope of this paper. We refer the more mathematically proficient readers to Text S2 in Supporting 
Information S1 for a proof that spherical harmonic multipole expansions can represent planar magnetic data 
arbitrarily well).

A further complication in this approach, and one that also applies to spherical data, is the placement of the 
origin of the spherical harmonic multipole expansion. For any potential field (magnetic, electric or gravity), the 
location of the origin of a multipole expansion cannot be constrained solely by the field data, since any place 
should work as long as the reference sphere (which is centered on the origin) encompasses the field sources. 
However, unlike for gravity, where a center of mass is a natural candidate for placement of the origin given that it 
enables elimination of the degree-1 term in spherical harmonic expansions of the gravitational potential (Couch 
et al., 2013; Lowrie & Fichtner, 2020), magnetic problems lack an easily identifiable “center of magnetization” 
(Lowes,  1994). Even so, the origin placement does have a strong effect on how rapidly the multipole series 
converges. To illustrate this point, consider a magnetic source comprised of just a single dipole located at position 
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𝐴𝐴 𝑟⃗𝑟0 . If we compute a spherical harmonic multipole expansion centered at 𝐴𝐴 𝑟⃗𝑟0 , such a series will have exactly one 
nonzero term, namely the dipole term. However, if we instead compute an expansion centered at 𝐴𝐴 𝑟⃗𝑟0 + Δ𝑟⃗𝑟 , there 
will be a multitude of nonzero terms (in fact, an infinite number), which are required to reproduce the field of a 
displaced dipole. The dipole coefficients in the two series will be identical, as they represent the net magnetic 
moment of the source distribution.

When using non-spherical, incomplete data (i.e., known only in a finite number of points within a limited region) 
and a truncated multipole expansion model, this fact has a significant impact: a particular choice for origin loca-
tion may require a much higher degree model to adequately represent the data than a different choice for origin 
location. On the other hand, we can use this to find the optimal location of the origin as that where a truncated 
multipole expansion of degree N best represents the data. This is the general strategy we adopt in this paper: for 
any given origin candidate location (which, as we will show, is provided by a nonlinear optimization algorithm), 
we find the multipole expansion coefficients via linear least squares and calculate the cost function value asso-
ciated with that position (i.e., a measure of the difference between model and experimental field maps). We then 
select the position yielding the smallest cost function value.

To summarize, our choice of using truncated spherical harmonic multipole expansions to enhance our model 
stems from properties such as (a) the net moment information is concentrated in just the first three coefficients; 
(b) the dipole term is translation-invariant (for a non-truncated expansion, strictly speaking); (c) higher-order 
terms have zero net moment; (d) simple recursive formulas allow us to compute the expansion up to an arbitrary 
degree; and (e) spherical harmonic expansions do not contain redundant terms (i.e., they form an orthogonal basis 
for the solution space of Laplace's equation in a spherical setting).

We describe in detail our method in Section 2. Given that this work is multi-disciplinary in nature and to make 
it more accessible and self-contained to a broader audience, which may be less familiar with some mathematical 
or instrumentation aspects, we present and review a few concepts related to spherical harmonics, linear algebra, 
magnetic mapping, and sensor noise. We suggest readers with a firmer grasp of these concepts to skip over most 
of Sections 2.1 and 2.3.

2.  Method
Prior to describing our method in detail, we briefly comment on alternative methods of net moment estimation. 
A previous work investigated the conversion of properties and results from spherical harmonic multipole expan-
sions to the planar setting via Kelvin transforms (Baratchart et al., 2017). This formal approach makes it explicit 
the dependence of the net moment on multipole terms other than the dipole in the rectangular case while also 
revealing alternative methods for moment estimation using Fourier analysis and asymptotics. A different method 
consists of formulating net moment estimation as a bounded extremal problem, which allows for the calculation 
of both local net moments (i.e., moment of a select region of the magnetization) under certain conditions and 
global net moments, but results in increased theoretical and computational complexity (Baratchart et al., 2019). 
The multipole method described below exhibits a balance between noise tolerance, computational complexity, 
and mapping area requirements that bridge the domain covered by those alternative approaches for the computa-
tion of global net moments.

2.1.  Theoretical Considerations

We start the derivation of our multipole model by recalling that the magnetic field outside a reference sphere 
of radius a encompassing all the sources can be expressed as the gradient of a magnetic scalar potential V [see 
Equations 1 and 2]. Because the magnetic scalar potential cannot usually be measured directly, we derive explicit 
formulas for the three components of the magnetic field by inserting Equation 2 into Equation 1 and calculating 
the gradient in spherical coordinates (Cain et al., 1967):

𝐵𝐵𝑟𝑟(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = −𝜇𝜇0
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜇𝜇0

𝑁𝑁
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2

(𝑛𝑛 + 1)

𝑛𝑛
∑

𝑚𝑚=0

(𝑔𝑔𝑚𝑚

𝑛𝑛 cos𝑚𝑚𝑚𝑚 + ℎ
𝑚𝑚

𝑛𝑛 sin𝑚𝑚𝑚𝑚)𝑃𝑃
𝑚𝑚

𝑛𝑛 (𝜃𝜃)� (6)

𝐵𝐵𝜑𝜑(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = −𝜇𝜇0
1

𝑟𝑟 sin 𝜃𝜃

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝜇𝜇0

sin 𝜃𝜃

𝑁𝑁
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2
𝑛𝑛
∑

𝑚𝑚=0

𝑚𝑚(𝑔𝑔𝑚𝑚

𝑛𝑛 sin𝑚𝑚𝑚𝑚 − ℎ
𝑚𝑚

𝑛𝑛 cos𝑚𝑚𝑚𝑚)𝑃𝑃
𝑚𝑚

𝑛𝑛 (𝜃𝜃)� (7)
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𝐵𝐵𝜃𝜃(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = −𝜇𝜇0
1

𝑟𝑟

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝜇𝜇0

𝑁𝑁
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2
𝑛𝑛
∑

𝑚𝑚=0

(𝑔𝑔𝑚𝑚

𝑛𝑛 cos𝑚𝑚𝑚𝑚 + ℎ
𝑚𝑚

𝑛𝑛 sin𝑚𝑚𝑚𝑚)
𝜕𝜕𝜕𝜕

𝑚𝑚

𝑛𝑛 (𝜃𝜃)

𝜕𝜕𝜕𝜕
,� (8)

where we have truncated the spherical harmonic multipole expansion at a maximum degree, N, corresponding to 
the Nth multipole. The Schmidt quasi-normalized functions and their derivatives can be recursively calculated. 
We express these recursion formulas in terms of Gauss-Laplace functions 𝐴𝐴 𝐴𝐴

𝑛𝑛𝑛𝑛𝑛
(𝜃𝜃) , which use a different normal-

ization of the associated Legendre polynomials and lead to simpler recursion formulas than those using 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑛𝑛 (𝜃𝜃) , 
and then renormalize the functions according to Schmidt's scheme:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� 0,0(�) = 1

� �,�(�) = (sin �)� �−1,�−1(�), for � ≥ 1 and� = �

� �,�(�) = (cos �)� �−1,�(�) −��,�� �−2,�(�), for � ≥ 1 and� ≠ �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�� 0,0

��
(�) = 0

�� �,�

��
(�) = (sin �)��

�−1,�−1

��
(�) + (cos �)� �−1,�−1(�), for � ≥ 1 and� = �

�� �,�

��
(�) = (cos �)��

�−1,�

��
(�) − (sin �)� �−1,�(�) −��,� �� �−2,�

��
(�), for � ≥ 1 and� ≠ �,

� (9)

where 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛𝑛 =

(𝑛𝑛−1)2−𝑚𝑚2

(2𝑛𝑛−1)(2𝑛𝑛−3)
 . Notice that, although the recursion formulas for 𝐴𝐴 𝐴𝐴 = 1, 𝑚𝑚 = 0 contain terms with negative 

values for the first index, this is not an issue given that such terms are multiplied by 𝐴𝐴 𝐴𝐴
1,0

= 0 and therefore ignored.

The Schmidt quasi-normalized function are then obtained by means of the scaling factors 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛𝑛 :

𝑃𝑃
𝑚𝑚

𝑛𝑛 (𝜃𝜃) = 𝑆𝑆
𝑛𝑛𝑛𝑛𝑛

𝑃𝑃
𝑛𝑛𝑛𝑛𝑛

(𝜃𝜃),� (10)

where these scaling factors are also computed recursively

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆𝑆
0,0 = 1

𝑆𝑆
𝑛𝑛𝑛0 = 𝑆𝑆

𝑛𝑛−1,0

(

2 −
1

𝑛𝑛

)

, for 𝑛𝑛 ≥ 1 and𝑚𝑚 = 0

𝑆𝑆
𝑛𝑛𝑛𝑛𝑛 =

√

𝐶𝐶(𝑛𝑛 − 𝑚𝑚 + 1)

𝑛𝑛 + 𝑚𝑚
𝑆𝑆

𝑛𝑛𝑛𝑛𝑛−1
, for 𝑛𝑛 ≥ 1 and𝑚𝑚 ≠ 0,

� (11)

and𝐶𝐶 =

⎧

⎪

⎨

⎪

⎩

2, if𝑚𝑚 = 1

1, otherwise.

�

The measurement configuration most commonly used in scanning magnetic microscopes and magnetic imaging 
systems is best described using a Cartesian coordinate system (Figure 1) and is based on the detection of the field 
component normal to the sample plane (i.e., the Bz component; see Section 2.3.1):

𝐵𝐵𝑧𝑧(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = (cos 𝜃𝜃)𝐵𝐵𝑟𝑟(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) − (sin 𝜃𝜃)𝐵𝐵𝜃𝜃(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟).� (12)

Substituting Equations 6 and 8 in Equation 12, we get

𝐵𝐵𝑧𝑧(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = 𝜇𝜇0

𝑁𝑁
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2
𝑛𝑛
∑

𝑚𝑚=0

[

(𝑛𝑛 + 1)cos(𝜃𝜃)𝑃𝑃𝑚𝑚

𝑛𝑛 (𝜃𝜃) + sin(𝜃𝜃)
𝜕𝜕𝜕𝜕

𝑚𝑚

𝑛𝑛 (𝜃𝜃)

𝜕𝜕𝜕𝜕

]

(𝑔𝑔𝑚𝑚

𝑛𝑛 cos𝑚𝑚𝑚𝑚 + ℎ
𝑚𝑚

𝑛𝑛 sin𝑚𝑚𝑚𝑚).� (13)

Note that although we will focus our analysis on the z-component of the field, which exhibits the important 
property of rotational invariance, expressions for other Cartesian field components can be easily derived from 
Equations 6 to 8 and suitable conversion formulas between vector components in spherical and Cartesian coor-
dinate systems.

It is important to realize that Equation  13 shows that 𝐴𝐴 𝐴𝐴𝑧𝑧 (and more generally, the vector magnetic field 𝐴𝐴 ⃖⃖⃗𝐵𝐵 ) 
depends linearly on the coefficients 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑛𝑛  and 𝐴𝐴 𝐴
𝑚𝑚

𝑛𝑛  , with terms in 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 acting as basis functions. That is to say, 𝐴𝐴 𝐴𝐴𝑧𝑧 is 
a linear combination of basis elements in a function space and 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑛𝑛  and 𝐴𝐴 𝐴
𝑚𝑚

𝑛𝑛  represent the coefficients of this linear 
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combination. This allows us to express such a relationship in matrix form for a finite number, K, of discrete 
magnetic field measurements:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑄𝑄
1,0

1
𝑄𝑄

1,1

1
𝑅𝑅

1,1

1
𝑄𝑄

2,0

1
. . . 𝑅𝑅

𝑁𝑁𝑁𝑁𝑁

1

𝑄𝑄
1,0

2
𝑄𝑄

1,1

2
𝑅𝑅

1,1

2
𝑄𝑄

2,0

2
. . . 𝑅𝑅

𝑁𝑁𝑁𝑁𝑁

2

⋮ ⋮ ⋮ ⋮ ⋮

𝑄𝑄
1,0

𝐾𝐾
𝑄𝑄

1,1

𝐾𝐾
𝑅𝑅

1,1

𝐾𝐾
𝑄𝑄

2,0

𝐾𝐾
. . . 𝑅𝑅

1,𝑁𝑁

𝐾𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔𝑔
0

1

𝑔𝑔
1

1

ℎ
1

1

𝑔𝑔
0

2

⋮

ℎ
𝑁𝑁

𝑁𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝐵𝑧𝑧(𝑟𝑟1, 𝜃𝜃1, 𝜑𝜑1)

𝐵𝐵𝑧𝑧(𝑟𝑟2, 𝜃𝜃2, 𝜑𝜑2)

⋮

𝐵𝐵𝑧𝑧(𝑟𝑟𝐾𝐾 , 𝜃𝜃𝐾𝐾 , 𝜑𝜑𝐾𝐾 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, or 𝐀𝐀𝐀𝐀 = 𝐛𝐛,� (14)

where 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛𝑛

𝑘𝑘
= 𝜇𝜇0

(

𝑎𝑎

𝑟𝑟𝑘𝑘

)𝑛𝑛+2[

(𝑛𝑛 + 1)cos(𝜃𝜃𝑘𝑘)𝑃𝑃
𝑚𝑚

𝑛𝑛 (𝜃𝜃𝑘𝑘) + sin(𝜃𝜃𝑘𝑘)
𝜕𝜕𝜕𝜕

𝑚𝑚
𝑛𝑛
(𝜃𝜃)

𝜕𝜕𝜕𝜕
|𝜃𝜃=𝜃𝜃𝑘𝑘

]

cos𝑚𝑚𝑚𝑚𝑘𝑘 

and 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛𝑛

𝑘𝑘
= 𝜇𝜇0

(

𝑎𝑎

𝑟𝑟𝑘𝑘

)𝑛𝑛+2[

(𝑛𝑛 + 1)cos(𝜃𝜃𝑘𝑘)𝑃𝑃
𝑚𝑚

𝑛𝑛 (𝜃𝜃𝑘𝑘) + sin(𝜃𝜃𝑘𝑘)
𝜕𝜕𝜕𝜕

𝑚𝑚
𝑛𝑛
(𝜃𝜃)

𝜕𝜕𝜕𝜕
|𝜃𝜃=𝜃𝜃𝑘𝑘

]

sin𝑚𝑚𝑚𝑚𝑘𝑘 .

For a source model of degree N (i.e., containing N multipoles), there are 𝐴𝐴 𝐴𝐴
2
+ 2𝑁𝑁 Gauss coefficients to be 

determined. We generally wish to work with overdetermined systems of linear equations so as to better constrain 
the solution in the presence of noise. That means that the number of points in the magnetic field map should 
satisfy 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴

2
+ 2𝑁𝑁 .

The Cartesian components of the net magnetic moment are related to the first three Gauss coefficients 
(Blakely, 1996) as follows:

𝑚𝑚𝑥𝑥 = 4𝜋𝜋𝜋𝜋
3
𝑔𝑔
1

1

𝑚𝑚𝑦𝑦 = 4𝜋𝜋𝜋𝜋
3
ℎ
1

1

𝑚𝑚𝑧𝑧 = 4𝜋𝜋𝜋𝜋
3
𝑔𝑔
0

1

,� (15)

where the scaling factor 𝐴𝐴 1∕𝜇𝜇0 has already been incorporated by means of the definition used in Equation 1. Thus, 
by solving the system of linear Equation 14, we can compute an estimate for the net moment just using the first 
three Gauss coefficients in the vector w (i.e., the dipole coefficients).

However, this presupposes that an origin for the multipole expansion has been chosen so that each of the coordi-
nates 𝐴𝐴 𝐴𝐴𝑘𝑘, 𝜃𝜃𝑘𝑘, 𝜑𝜑𝑘𝑘 representing the vector from the origin to a given measurement position, k, can be computed and 
the matrix A can be constructed. As we discussed before, the location of the origin of the expansion is generally 
not constrained in the magnetostatics case. We next see how this can be done in a practical manner.

2.2.  Basic Algorithm

For a set maximum model degree Nmax, we use the following procedure to obtain a moment estimate:

1.	 �Obtain an approximate estimate for the origin location based on inspection of the field map of the sample and 
on an estimate for the sensor-to-sample distance. The total field map, which can be computed from the 𝐴𝐴 𝐴𝐴𝑧𝑧 map 
(Lima & Weiss, 2009), typically attains its maximum over the magnetic source and this location provides an 
estimate for the optimal horizontal coordinates of the origin that is somewhat independent of the magnetiza-
tion direction. The sensor-to-sample distance provides a lower limit for the vertical coordinate of the origin. If 
appropriate, sample thickness can also be incorporated into the vertical coordinate estimation.

2.	 �Arrange field map data as a column vector b.
3.	 �Loop A: starting with model degree N = 1 (dipole) and increasing at each iteration, repeat steps (3.a) through 

(3.d) until the model degree exceeds Nmax.
�3.a	� Loop B: generate an initial guess for the origin location by introducing random perturbations to the three 

coordinates obtained in (1) and pass it to a non-linear optimization algorithm (e.g., Levenberg-Marquardt, 
trust-region-reflective, or quasi-Newton methods) along with the magnetic data vector b.

�3.a.1	� Loop C: populate all 𝐴𝐴 𝐴𝐴
(

𝑁𝑁
2
+ 2𝑁𝑁

)

 entries of matrix A according to the current guess for the 
origin location.
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�3.a.2	� Solve the system of linear Equation 14 for the multipole expansion coefficients w using linear 
least-squares methods.

�3.a.3	� Compute the modeled field data 𝐴𝐴 𝐛̃𝐛 by multiplying matrix A by the solution vector w.
�3.a.4	� Calculate the residuals 𝐴𝐴 𝐛̃𝐛 − 𝐛𝐛 and their Euclidean norm normalized by the number of field 

measurements available, 𝐴𝐴 𝐴𝐴 =
1

𝐾𝐾

√

𝐾𝐾
∑

𝑘𝑘=1

(

𝑏̃𝑏𝑘𝑘 − 𝑏𝑏𝑘𝑘

)

2

 . The Euclidean norm of the residuals is 

assigned as the value of the cost function for that choice of origin location.
�3.a.5	� Using the nonlinear optimization algorithm, compute a new candidate for the origin location 

based on the residuals/cost function behavior.
�3.a.6	� End C: quit optimization if the (local/global) minimum of the cost function is reached or the 

maximum number of iterations is exceeded.
�3.b	� Obtain the net moment associated with the final solution provided by the optimization algorithm and 

store it for subsequent comparison. Moment estimate is computed by plugging the first three components 
of w into Equation 15.

�3.c	� End B: exit loop after computing ≥30 solutions using different initial guesses for the origin location.
�3.d	� Compare solutions and establish which one attains the global minimum of the cost function. The net 

moment vector associated with the global minimum is then set as the estimate obtained for a given model 
degree N.

4.	 �End A: exit loop if residuals for the current model degree are uncorrelated and at noise level or if moment 
estimates begin to diverge rapidly

5.	 �Select final solution based on stability of the estimates and low residuals.

It is typically not advantageous to use models containing multipoles of order higher than necessary to adequately 
represent the magnetic field data given that both numerical instability, noise magnification, and computational 
time increase with model degree. In addition, this may often lead to overfitting, which manifests as the cancella-
tion of noise in the central region of the field map because high-degree models progressively become capable of 
reproducing rapid variations in the field map related to noise in that region as model complexity increases (this 
issue is illustrated in Section 3.2). Thus, one may expect net moment estimates to converge to a steady value and 
then start to diverge as the number of multipoles in the model increases.

2.3.  Numerical and Experimental Considerations

2.3.1.  Magnetic Microscopy Instruments and Measurement Configurations

Magnetic microscopes can be broadly divided into two different categories: (a) scanning microscopes and (b) 
imaging microscopes (Table 1). Although they can be treated indistinguishably in many situations, specific char-
acteristics sometimes need to be considered to better capture the nature of the magnetic data being analyzed. For 
instance, different magnetic sensing technologies may exhibit distinct noise characteristics, which in turn may 
impact moment estimation accuracy in different ways.

In scanning microscopes, the sample is displaced horizontally in a grid of positions and measurements are taken 
sequentially at each location. Low-temperature superconducting quantum interference device (SQUID) sensors 
and room-temperature magnetic sensors (e.g., Hall-effect, magnetoresistance, magnetoimpedance, magnetic 
tunnel junction (MTJ) sensors) are typically kept at a fixed position to reduce vibration issues and avoid pick-
ing up variations in the background field (Egli & Heller, 2000; Fong et al., 2005; Gruhl et al., 2001; Hankard 
et al., 2009; Kawai et al., 2016; Kletetschka et al., 2013; Lima et al., 2014; Uehara & Nakamura, 2007). The first 
allow for very high field sensitivity at the expense of spatial resolution owing to cryogenic constraints required 
to keep the sensor at very low temperatures while measuring samples maintained at room temperature; the latter 
have increased spatial resolution but reduced field sensitivity, in part due to a much higher sensor operating 
temperature and associated increase in sensor noise.

Imaging microscopes typically use digital cameras to capture fluorescence or reflected/transmitted light that is 
affected by the sample's magnetic field via a diamond chip with nitrogen-vacancy centers [quantum diamond 
microscopy (QDM)] or via a garnet film [magneto-optical imaging (MOI)] (Bobyl et al., 2007; Glenn et al., 2017; 
Uehara et  al.,  2010). Both transducer and sample are kept stationary and all measurements at different loca-
tions within the field of view are captured simultaneously. Samples are only displaced to capture different fields 
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Scanning microscopes Imaging microscopes

Spatial resolution >5 μm (RT sensors) >5 μm

>100 μm (SC sensors)

Step size/pixel size >1 μm >1 μm

Mapping area/field of view <2,500 mm 2 <15 mm 2

Sensor-to-sample distance >5 μm (RT sensors) >1 μm

>100 μm (SC sensors)

Noise floor >1 μT (MTJ) >10 nT (QDM)

>10 pT (SQUID) >100 μT (MOI)

Bias field No a No (MOI); Yes (QDM, <1 mT)

Measured field components Single (typically BZ
 b) MOI: Single (BZ)

QDM: Vector (𝐴𝐴 ⃖⃖⃗𝐵𝐵 projected along each of the four 
<111> crystallographic directions); Single 

(𝐴𝐴 ⃖⃖⃗𝐵𝐵 projected along a single <111> direction)

Optical registration Indirect Direct

Note. MTJ, magnetic tunnel junction; RT, room temperature; SC, superconducting.
 aSome magnetic sensors placed at very close proximity to the sample (e.g., <30 μm) may interfere with its magnetization in some situations owing to features like 
flux focusers and magnetic fields produced by sensor bias currents.  bThe field component normal to the sample's top surface (BZ, in our axis orientation convention) 
exhibits rotational invariance and does not change with the relative orientation of the sensor with respect to the sample, except for a possible rotation of the field map.  
Other field components do not exhibit this property and the maps will be different depending on the relative orientation. This complicates interpretation and requires 
careful registration of the orientation of the sensor with respect to the sample, which is more readily obtained in imaging systems.

Table 1 
Comparison of General Characteristics of the Two Categories of Magnetic Microscopes

Test magnetization
# Source 
elements Description Net moment

Source A 2 Dipole 1: m1 = 1.0 × 10 −11 Am 2, i1 = −20°, d1 = 20° m = 1.577 × 10 −11 Am 2

Dipole 2: m2 = 1.0 × 10 −11 Am 2, i1 = 0°, d1 = 305° i = −12.5°, d = 341°

Relative displacement: 𝐴𝐴 ∆𝑥𝑥 = 30𝜇𝜇m,∆𝑦𝑦 = 12𝜇𝜇m

Source B 2 Dipole 1: m1 = 1.0 × 10 −11 Am 2, i1 = −20°, d1 = 20° m = 1.577 × 10 −11 Am 2

Dipole 2: m2 = 1.0 × 10 −11 Am 2, i1 = 0°, d1 = 305° i = −12.5°, d = 341°

Relative displacement: 𝐴𝐴 ∆𝑧𝑧 = 30𝜇𝜇m

Source C 1 Uniformly magnetized thin square slab (50 μm × 50 μm × 0 μm) m = 1.0 × 10 −11 Am 2

i= −45°, d = 20°

Source D 1 Single magnetic dipole m = 1.0 × 10 −11 Am 2

i = 30°, d = 285°

Source E 2,000,000 Distribution of 2 million dipoles with identical magnitudes (1.0 × 10 −16 Am 2) and random directions 
within a 100 μm cubic volume. Magnetization efficiency of 1.5% along the direction i = −12.6°, 

d = 333.4°

m = 1.56 × 10 −12 Am 2

i = −14.0°, d = 334.9°

Source F 2,000,000 Distribution of 2 million dipoles with identical magnitude (1.0 × 10 −16 Am 2) and random directions 
within a 100 μm cubic volume. Magnetization efficiency of 0%, corresponding to a fully 

demagnetized state

m = 1.32 × 10 −13 Am 2

i = −36.0°, d = 180.4°

Note. The symbols m, i, d stand for the strength, inclination, and declination of the test source's net moment. For samples composed of two dipoles, the index is 
associated with the moment of each dipole, and 𝐴𝐴 ∆𝑥𝑥 , 𝐴𝐴 ∆𝑦𝑦 , and 𝐴𝐴 ∆𝑧𝑧 , represent the displacement between the two dipoles in the x, y, and z directions, respectively.

Table 2 
Synthetic Sources Used in the Characterization of the Performance of the Net Moment Estimation Technique
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of view for an enlarged mapping area or to analyze different regions of the sample. Imaging systems allow 
for near-perfect registration with optical images of the sample, as the same camera and objective are used for 
magnetic imaging and optical imaging.

In both categories, the magnetic sensors/transducers are brought into very close proximity to the geological sample's 
top surface to maximize both spatial resolution and magnetization/moment sensitivity. Estimating the distance 
between the sensor and the top surface of the sample is often useful to provide lower limits for the z coordinate of the 
source model/measurement plane and to constrain solutions to physically meaningful regions when applicable. This 
can be accomplished by using either magnetic or optical techniques. In the first case, mapping the field along horizon-
tal lines perpendicular to a long thin current-carrying wire can provide a good estimate of this distance, as the sepa-
ration between the observed peaks in the field is approximately twice the sensor-to-sample distance (Baudenbacher 
et al., 2003; T. S. Lee, et al., 1997). Alternatively, the full width at half maximum of the single-peak field produced 
by a very small magnetic source that is magnetized into/out of the sample plane can be used to provide an estimate for 
the sample-to-sensor distance (Lima et al., 2014). In the second case, optical distance measurement techniques, such 
as focal depth and interferometry, can be used to estimate the sensor-to-sample distance (Berkovic & Shafir, 2012).

Lastly, for some instrument configurations it may be necessary to model the finite size of the sensing area/volume 
of magnetic sensors, either by deconvolving the measured data or by incorporating integration/averaging effects 
associated with a finite sensor size into the modeling. We refer the reader to some of the literature discussing this 
issue (Egli & Heller, 2000; Lima & Weiss, 2016; Lima, et al., 1999, 2002; Roth et al., 1989; Tan et al., 1996).

2.3.2.  Limitations From Incompleteness of Magnetic Measurements

Attention must be paid to two aspects of the magnetic microscopy measurements that limit the accuracy of net 
moment estimates: (a) the magnetic field is usually only mapped on a single plane above the top surface of the 
sample; and (b) the field data are noncontinuous and bounded, as measurements are taken only at discrete points 
and only over a finite planar area. These factors reveal limitations of magnetic data and trade-off choices that go 
beyond a particular instrument design.

Unlike a spherical setting, where measurements are taken all around the magnetization of interest, a planar 
mapping configuration does not directly measure field information from the opposite side of the sample. Instead, 
it can be shown that such information is spread over large lateral distances from the center of a single-sided map 
(Baratchart et al., 2017). However, owing to instrumentation constraints, it is usually not realistic to map very 
large areas with fine step sizes. Not only would this produce very large data sets that require extensive meas-
urement time but also there is no advantage in mapping the sample's field past the region where it drops below 
the noise floor of the instrument or below background sources such as contamination in the sample mount, the 
sample holder itself, or temporal variations of the ambient field.

A critical issue in the computations is the stabilization of the 𝐴𝐴 (𝑎𝑎∕𝑟𝑟)𝑛𝑛+2 terms in Equations 6–8, which can rapidly 
decrease with increasing n depending on the value of a. Because r is not a constant on the measurement plane, 
unlike for spherical data, the choice for the value of a is even more critical. Although the particular choice for 
a gets canceled out in Equation 15, it can directly impact accuracy when performing calculations using double 
precision. Thus, we choose 𝐴𝐴 𝐴𝐴 = ℎ , where h is the distance between the measurement plane and the origin of the 
multipole expansion (Figure 1). This ensures that 𝐴𝐴 (ℎ∕𝑟𝑟)𝑛𝑛+2 ≤ 1 , taming the decay with increasing n, where the 
equality holds right above the origin given that 𝐴𝐴 𝐴𝐴 ≥ ℎ by definition and that 𝐴𝐴 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁 .

2.3.3.  Noise Sources

This study focuses on applications of the multipole technique to SQUID microscopy. However, our multipole 
fitting technique can be easily adapted and further optimized for data obtained with other magnetic micros-
copy instrumentation. In this and subsequent sections, noise characteristics, signal-to-noise ratios (SNRs), and 
sensor-to-sample distances representative of different types of magnetic microscopes are considered.

Any experimental setup for magnetic field detection will introduce imperfections into the measurements. Addi-
tive noise and sample contamination are the most common forms of degradation experienced in magnetic micros-
copy (e.g., Figure S8 in Supporting Information S1). In some scanning microscopes, errors in the positioning 
of the sample by the sample horizontal translation (X-Y) stage may lead to a noticeable signal-dependent noise 
component known as position noise (S. Y. Lee et al., 2004). In fact, the smaller the sensor-to-sample distance, 
the more critical position noise issues may become owing to the more rapid variations of the field in space. 
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Here, we only consider sources of additive noise, as position noise is not prevalent in our SQUID microscope 
and in other systems using high-precision stages whose positioning precision and accuracy are adequate for 
the sensor-to-sample distances involved. However, this might not be the case for other scanning magnetometer 
systems and performance of the moment estimation technique can be negatively impacted as a result.

Additive noise is uncorrelated with the field being measured and may be understood as a component that is added 
to the sample's detected field by the magnetic sensor itself, its read-out electronics, instrument parts, and/or the 
environment. This type of noise is typically a time-varying signal that becomes spatially distributed in a field 
map owing to the process of mapping or imaging a sample's magnetic field. Similarly, sample contamination can 
produce spurious magnetic sources that create magnetic signatures superimposed on the sample's uncontami-
nated magnetic field. They are usually static in nature and lead to recognizable features in a field map, such as 
small dipoles (Figure S8a in Supporting Information S1).

Additive noise consists of different components associated with the operation of a magnetic sensor and with 
electromagnetic fields that may be present in the measurement environment. Flicker noise (also known as 1/f 
noise owing to its spectral decay with frequency, f) is ubiquitous in electronic devices and is often the largest 
instrument noise component found at lower frequencies (<100 Hz). Thermal noise is usually white (i.e., spec-
tral content is constant with frequency) and tends to be visible beyond a “corner frequency” at which the 1/f 
noise drops below the white noise floor level (see, e.g., Figure S8c in Supporting Information S1). Some noise 
components originating from the readout electronics and the magnetic sensors may be ameliorated by using 
signal and bias modulation schemes and temperature compensation (Drung & Mück, 2004; Kawai et al., 2016; 
Koch et  al.,  1994; Lima et  al., 2014; Schöne et  al., 1997). Environmental noise is commonly composed of 
peaks in the spectrum, which are often associated with the fundamental frequency of power lines (60 or 50 Hz 
depending on the country) and its harmonics. Other sources may also be present in the environment, creating 
both transient signals (e.g., elevators, vehicles and the subway) and steady signals (e.g., monitors and other 
pieces of electronic equipment). Environmental noise contamination can be mitigated by operating the instru-
ment inside a shielded chamber or shielded room, which is also critical for minimizing induced magnetization 
in the sample.

One of the key advantages of magnetic sensors operating at very low temperatures is the substantial decrease 
in 1/f noise and thermal noise (Cantor & Koelle, 2004), leading to corner frequencies below 1 Hz (Figure S8c 
in Supporting Information S1). This minimizes sensor output low-frequency “drift” and allows for very weak 
magnetic sources to be successfully mapped, which can be further improved with post-measurement background 
correction techniques that aim to reduce any residual sensor drift effects observed in the data. Nevertheless, 
considering that the spectrum of the time-varying magnetic field originating from displacing a geological sample 
at scanning velocities ranging from 1 to 5 mm/s underneath our SQUID sensor lies predominantly below 20 Hz, 
there is a large spectral overlap between the 1/f component and the signal of interest, particularly for higher sensi-
tivity scales of the SQUID read-out electronics.

Other sources of instrument noise are time-varying signals associated with precision positioners in scanning 
microscopes and laser excitation/light sources in imaging systems. Lastly, the displacement of a sample holder 
in scanning microscopes and residual background magnetization of instrument parts may produce perceptible 
features in a field map when measuring weak samples. However, in properly designed instruments, such noise 
sources are of secondary importance.

Instrument and environmental noise components in field maps obtained using scanning magnetic microscopy can 
be somewhat complex, as they are comprised of nonadjacent segments of noise time series stitched side by side in 
space. Usually, field measurements are not taken during the retrace of the scanning stage between scan lines. This 
helps prevent spatial misalignment of magnetic data along neighboring scan lines due to unequal flexing of the 
structures attached to the scanning stage (e.g., pedestal and sample holder) when moving in opposite directions. 
Therefore, noise characteristics in the scan direction and in the transverse are distinct, with the latter correspond-
ing to a very coarse sampling of the noise time series.

Synthetic Gaussian white noise is frequently used to represent noise contamination in measurements owing to its 
special mathematical properties (it is a zero-mean stationary and ergodic stochastic process) and the simplicity 
of generating it on computers. Although this could be an adequate first-order approximation in some applications 
(e.g., QDM), it is critical to test the technique with actual measured instrument and environmental noise to fully 
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capture the noise sensitivity of the technique under typical experimental conditions. As we will see in Section 3, 
the technique performs differently to distinct types of noise, which is expected particularly for more complicated 
mixed linear-nonlinear inverse problems such as the one studied in this paper.

Sample contamination issues can be critical when measuring weak samples. Spurious sources in the magnetic 
map will directly influence net moment estimation if they cannot be successfully isolated and removed. Preparing 
samples in a cleanroom and using carefully chosen nonmagnetic tools, adhesives, and substrates can be quite 
effective in mitigating this problem, with only a few scattered weak sources remaining. Contamination can be 
considered a noise source as it may lead to variations in the estimated moments, particularly if its signature 
changes during stepwise demagnetization and leads to irregular perturbation of the moment estimates. A key 
advantage of magnetic microscopy techniques is the ability to visualize spurious sources in a particular sample 
and either exclude them by cropping the field map or identify whether cleaning and remounting are required 
should the contamination be too close to the rock sample.

As a final note, the vast majority of sensors used in magnetic imaging of geological samples are not absolute 
sensors. This means that a reference for zero field must be provided. In practice, the sensor's output signal is 
zeroed in a region of the sample expected to be away from any magnetic sources. Therefore, imperfect zeroing 
of the sensor's output and amplitude offset introduced by the 1/f noise component and other noise components 
may lead to a spurious offset in the map. Preprocessing of the magnetic data prior to moment estimation can 
often ameliorate these issues but, as we will discuss in Section 3.4, small residual offsets that could not be fully 
removed from the maps may still impact the accuracy of the moment estimations and have to be handled by the 
model.

2.3.4.  Sensitivity to Noise

We expect that the higher the noise level in the measurements, the lesser the accuracy of the estimation method. 
It is critical that the condition number of the matrix A (i.e., a measure of how much the solution changes for small 
perturbations in the input data, often calculated as the ratio of the largest to the smallest singular value of A) be 
not excessively large to ensure reasonable stability of the solution and avoid overamplification of noise present in 
the magnetic data. The condition number can be improved by choosing a mapping area that extends sufficiently 
far from the source such that its magnetic field is near zero at the edges of the map [e.g., below a few percent of 
the peak field value or, for maps with low signal-to-noise ratios, below the noise floor]. The condition number 
can also be reduced by avoiding sampling the map too finely (e.g., using mapping step sizes that are not signifi-
cantly smaller than 1/10 of the sensor-to-sample distance). As higher order multipoles are incorporated into the 
model and the matrix A grows large, the condition number grows and a regularization strategy may be needed to 
stabilize the least-squares solution and tame sensitivity to noise.

Singular-value decomposition (SVD) offers a way to both understand the causes of noise amplification and miti-
gate its effects. In essence, a real 𝐴𝐴 𝐴𝐴 × 𝑞𝑞 matrix A can be decomposed as (Golub & Van Loan, 2013; Hansen, 1987)

𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐔𝐔
𝐓𝐓
=

𝑝𝑝
∑

𝑖𝑖=1

𝐮𝐮𝐢𝐢𝜎𝜎𝑖𝑖𝐯𝐯
𝐓𝐓

𝐢𝐢
,� (16)

where 𝐴𝐴 𝐔𝐔 and 𝐴𝐴 𝐕𝐕 are 𝐴𝐴 𝐴𝐴 × 𝑝𝑝 and 𝐴𝐴 𝐴𝐴 × 𝑞𝑞 matrices, respectively, with orthonormal columns (i.e., 𝐴𝐴 𝐔𝐔𝐓𝐓𝐔𝐔 = 𝐈𝐈𝐩𝐩 and 
𝐴𝐴 𝐕𝐕𝐓𝐓𝐕𝐕 = 𝐈𝐈𝐪𝐪 ), 𝐴𝐴 𝚺𝚺 is an 𝐴𝐴 𝐴𝐴 × 𝑞𝑞 diagonal matrix with nonnegative diagonal elements arranged in nonincreasing order 

(known as singular values), 𝐴𝐴 𝐮𝐮𝐢𝐢 and 𝐴𝐴 𝐯𝐯𝐢𝐢 are denoted the ith left singular vector and the ith right singular vector, 
respectively and are the ith columns of 𝐴𝐴 𝐔𝐔 and 𝐴𝐴 𝐕𝐕 , respectively, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the ith diagonal element of 𝐴𝐴 𝚺𝚺 , 𝐴𝐴 𝐈𝐈𝐩𝐩 , and 𝐴𝐴 𝐈𝐈𝐪𝐪 are 
identity matrices with dimensions 𝐴𝐴 𝐴𝐴 × 𝑝𝑝 and 𝐴𝐴 𝐴𝐴 × 𝑞𝑞 , respectively, and  T denotes a transpose operation. The pseudo-
inverse (or Moore-Penrose) inverse of A, which is denoted A +, is then given by

𝐀𝐀
+ = 𝐕𝐕𝐕𝐕

+
𝐔𝐔

𝐓𝐓 =

𝑝𝑝
∑

𝑖𝑖=1

𝐯𝐯𝐢𝐢𝜎𝜎
−1
𝑖𝑖
𝐮𝐮
𝐓𝐓

𝐢𝐢
,� (17)

where 𝜎𝜎−1
𝑖𝑖

=

⎧

⎪

⎨

⎪

⎩

0, if 𝜎𝜎𝑖𝑖 = 0

1∕𝜎𝜎𝑖𝑖, otherwise.
�
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The pseudoinverse is a generalization of the inverse matrix, which is only defined for square matrices, and can be 
used to obtain minimum-norm least-squares solutions to systems of linear equations such as Equation 14. In this 
case, the solution is given by

𝐰𝐰 = 𝐀𝐀
+
𝐛𝐛 =

𝑠𝑠
∑

𝑖𝑖=1

𝐮𝐮
𝐓𝐓

𝐢𝐢
𝐛𝐛

𝜎𝜎𝑖𝑖

𝐯𝐯𝐢𝐢,� (18)

where s represents the number of nonzero singular values. If field measurements are contaminated by additive 
noise (here denoted η), we have

𝐰̃𝐰 = 𝐀𝐀
+(𝐛𝐛 + η) =

𝑠𝑠
∑

𝑖𝑖=1

𝐮𝐮
𝐓𝐓

𝐢𝐢
𝐛𝐛

𝜎𝜎𝑖𝑖

𝐯𝐯𝐢𝐢 +

𝑠𝑠
∑

𝑖𝑖=1

𝐮𝐮
𝐓𝐓

𝐢𝐢
η

𝜎𝜎𝑖𝑖

𝐯𝐯𝐢𝐢 = 𝐰𝐰 + 𝐰𝐰η,� (19)

which corresponds to the solution for noiseless data (w) with an added component (wη) associated with the noise. 
The effects of the singular values on the noise can be understood by analyzing the different operations performed 
in Equation 19: (a) the projection of η onto one of the left singular vectors 𝐴𝐴 𝐮𝐮𝐢𝐢 is calculated; (b) this projection is 
multiplied by 𝐴𝐴 1∕𝜎𝜎𝑖𝑖 ; (c) the right singular vector 𝐴𝐴 𝐯𝐯𝐢𝐢 is scaled by the quantity obtained in (b). For very small singular 
values, this means that small perturbations introduced in the magnetic data by noise may result in large changes 
to the solution by virtue of the large scaling of the last right singular vectors 𝐴𝐴 𝐯𝐯𝐢𝐢 .

In our moment estimation problem, by definition, the left and right singular vectors associated with non-zero 
singular values form an orthonormal basis for the measurement subspace (i.e., column space of A) and spherical 
harmonic coefficient space (i.e., row space of A), respectively. In particular, although the left singular vectors 

𝐴𝐴 𝐮𝐮𝐢𝐢 are orthogonal, they do not directly correspond to single multipole components given that the latter are not 
orthogonal in the planar setting, as was discussed in Section 1. In fact, the vectors 𝐴𝐴 𝐮𝐮𝐢𝐢 are associated with linear 
combinations of multipole components. Thus, net moment information is not concentrated at just three pairs of 
singular vectors 𝐴𝐴 𝐮𝐮𝐢𝐢 , 𝐴𝐴 𝐯𝐯𝐢𝐢 but is instead spread across a large number of singular vectors. Whether or not all such 
vectors are relevant to estimating the net moment in a given situation is directly related to the contribution of a 
particular 𝐴𝐴 𝐯𝐯𝐢𝐢 to the net moment (i.e., the magnitude of the first three components of 𝐴𝐴 𝐯𝐯𝐢𝐢 , which correspond to the 
first three Gauss coefficients representing the dipole term) combined with the (scaled) projection of the magnetic 

data onto the left singular vectors 𝐴𝐴 𝐮𝐮𝐢𝐢 , 𝐴𝐴 𝐴𝐴𝑖𝑖(𝐛𝐛) =
𝐮𝐮
𝐓𝐓

𝐢𝐢
𝐛𝐛

𝜎𝜎𝑖𝑖

 , that is part of Equation 19. If that projection is very small and/
or if the first three components of that particular 𝐴𝐴 𝐯𝐯𝐢𝐢 are negligible, then that right singular vector is not relevant 
to net moment estimation.

As expected in SVD, the higher the index i, the higher the oscillations in the singular vectors. In particular, this 
means that more high-order multipole terms are incorporated into 𝐴𝐴 𝐮𝐮𝐢𝐢 while at the same time the projection of 
moderately non-dipolar data b onto 𝐴𝐴 𝐮𝐮𝐢𝐢 becomes smaller. If the unscaled projection of the data, 𝐴𝐴 𝐮𝐮

𝐓𝐓

𝐢𝐢
𝐛𝐛 , falls faster 

than the scaling factor 𝐴𝐴 1∕𝜎𝜎𝑖𝑖 grows as the index i increases, the net moment estimation approaches (within a 
prescribed error) the correct value at 𝐴𝐴 𝐴𝐴 = 𝑠𝑠1 , where 𝐴𝐴 𝐴𝐴1 ≤ 𝑠𝑠 . When data are contaminated with noise, it may not 
be effective to compute the pseudoinverse up to 𝐴𝐴 𝐴𝐴 = 𝑠𝑠1 , depending on the scaled projection of the noise onto the 

left singular vectors 𝐴𝐴 𝐴𝐴𝑖𝑖(η) =
𝐮𝐮
𝐓𝐓

𝐢𝐢
η

𝜎𝜎𝑖𝑖

 . Such terms may easily become dominant past a certain index 𝐴𝐴 𝐴𝐴 = 𝑠𝑠0 , where 
𝐴𝐴 𝐴𝐴0 < 𝑠𝑠1 ≤ 𝑠𝑠 , thus negatively impacting the accuracy of the estimates.

Importantly, truncating the SVD at 𝐴𝐴 𝐴𝐴 = 𝑠𝑠0 is generally not equivalent to truncating the multipole expansion at a 
corresponding degree, since as discussed above, the singular vectors may be comprised of linear combinations 
of several multipole components of different orders and degrees. A truncated SVD will instead discard basis 
elements that lead to excessive noise magnification.

As a final remark, we note that the scaled projection of the noise 𝐴𝐴 𝐴𝐴𝑖𝑖(η) is directly linked to the specific noise being 
projected onto 𝐴𝐴 𝐮𝐮𝐢𝐢 . Therefore, the performance of the algorithm is affected not just by the SNR but also by the 
type of noise present in the magnetic data. Moreover, each realization of the random noise will generally yield 
different projections and lead to some scatter in the estimates, an effect that is more pronounced for maps with 
lower SNRs.
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2.4.  Regularization Strategies

A discrete ill-posed inverse problem, such as those studied in this paper, will generally not show a large gap in 
the singular values, exhibiting instead a continuous decay. This makes choosing the cutoff point for discard-
ing singular values and associated singular vectors more complicated: discarding too many singular values will 
compromise the accuracy of the moment estimates, while discarding too few may yield large variations in the 
moment estimates that may not seem to converge to a well-defined value. The absence of a large gap in the singu-
lar value spectrum suggests a trivial nullspace for matrix A, and very large condition numbers lead to instabilities 
associated with the smallest singular values. Indeed, this is an issue similar to the downward continuation of 
magnetic fields in the sense that there is overmagnification of noise that does not strictly involve nonuniqueness 
but instead arises from stability issues. Provided that (a) we have more measurements than unknown coefficients 
and (b) the magnetic field is adequately sampled on a planar grid above the sample, the least-squares fit of the 
multipole expansion to the data is generally unique for a given origin location. However, silent sources in the full 
continuous problem lead to nearly silent sources (i.e., singular vectors with very small singular values) when the 
degree of the multipole expansion grows in which case the solution of the fitting procedure may be too sensitive 
to perturbations introduced by noise, as explained in the previous subsection, thus requiring regularization.

Because it takes progressively increasing time to obtain an optimal net moment estimate for higher-degree models 
for larger maps, regularization strategies that rely on repeatedly solving the inverse problem a large number of 
times may not be realistic in some cases. In view of those constraints, we chose the following approach: a fixed 
cutoff point determined by the total number of coefficients in the model, such that all singular values and singu-
lar vectors beyond the cutoff index were discarded and not used in solving the linear least-squares problem. We 
tested other methods such as (a) computing the full SVD expansion and determining the truncation point by 
capping the condition number, and (b) using standard techniques for solving the least-squares problem that do 
not involve decomposition truncation, with or without added Tikhonov regularization. However, those did not 
yield consistent results, which we attribute to the nonlinear part of the inverse problem and the changing nature 
of matrix A resulting from the optimization procedure for picking the origin location.

Specifically, in our regularization strategy, we discard as many singular values as the number of coefficients 
associated with the last LREG multipoles in the expansion truncated at degree N while always preserving at least 
the first three singular vectors/singular values in the SVD to ensure we recover a moment estimate. A multipole 
of degree 𝐴𝐴 𝐴𝐴 has 𝐴𝐴 2𝑁𝑁 + 1 coefficients associated with it. Thus, for 𝐴𝐴 𝐴𝐴REG = 1 and 𝐴𝐴 𝐴𝐴 ≥ 2 , we discard an equivalent 
number of singular values; specifically, the last 𝐴𝐴 2𝑁𝑁 + 1 singular values and associated singular vectors of matrix 
A are discarded. Similarly, for 𝐴𝐴 𝐴𝐴REG = 2 and 𝐴𝐴 𝐴𝐴 ≥ 3 , we discard the last 𝐴𝐴 (2𝑁𝑁 + 1) + [2(𝑁𝑁 − 1) + 1] = 4𝑁𝑁 singu-
lar values and associated singular vectors, which is the same number of coefficients associated with multipoles 
of degrees 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 − 1 . More generally, for 𝐴𝐴 𝐴𝐴 ≥ 𝐿𝐿REG + 1 , the last 𝐴𝐴 𝐴𝐴REG(2𝑁𝑁 + 2 − 𝐿𝐿REG) singular values and 
associated singular vectors are discarded, while for 𝐴𝐴 𝐴𝐴 ≤ 𝐿𝐿REG , all but the first three singular values and associ-
ated singular vectors are discarded.

Although this strategy may sometimes yield a slightly sub-optimal cutoff point for the singular values, it has the 
advantage that it is much faster than other truncation approaches as it does not require scanning through a variety 
of cutoff candidates. In fact, our tests showed only marginal improvement by choosing the SVD truncation point 
anywhere between 1 and s. This can be explained by the structure of the singular vectors in this problem and the 
general existence of a series of triplets of singular values associated with the three net moment components, as 
explained below.

We illustrate all these points with an example using synthetic data (Figure 2). We simulated the field map of 
a synthetic source distribution (hereafter denoted Source A) comprised of two magnetic dipoles of identical 
strength and different directions separated by 30 μm in the x-direction and by 12 μm in the y-direction (see 
Table 2). The sensor-to-sample distance used was 25 μm. Based on these data, we computed the multipole expan-
sion associated with the optimal solution after fitting for the origin location following the algorithm detailed in 
Section 2.2. Notice the significant similarity of multipole terms in the planar setting. Specifically, the first three 
terms of multipoles of order greater than 1 (quadrupole and above) are very similar to dipole components but with 
different field decays. This is a manifestation of the ill-posedness of the associated inverse problem and illustrates 
the difficulty in separating the dipole term (i.e., net moment) from contributions from higher order terms. As 
discussed previously, whereas all those multipole components are linearly independent and form a basis for the 
magnetic field space, they are not orthogonal when restricted to the measurement plane subspace.
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On the other hand, the left singular vectors 𝐴𝐴 𝐮𝐮𝐢𝐢 form, by definition, an orthonormal basis for the same magnetic 
field subspace (Figure 3). While there appears to be some similarities with a few multipole components, detailed 
comparison of the two figures reveals key differences. First, the initial three left singular vectors (Figure  3, 
panels 1–3), associated with the largest singular values, are not the dipole components (cf. Figure 2b); instead, 
they appear similar to the first three components of a multipole of order between 4 and 7 (cf. Figures 2d and 2e), 
although not quite exactly because otherwise they would not contribute to the net moment. Second, the corre-
sponding right singular vectors 𝐴𝐴 𝐯𝐯𝐢𝐢 have significant dipole terms (i.e., first three coefficients of each singular 
vector as shown in Figure 4a, ordered according to non-increasing singular values shown in Figure 4b). Third, in 
fact many other right singular vectors (typically in triplets, but not necessarily grouped consecutively as in this 
example) contribute significantly to each of the dipole components. This is perhaps best seen by computing the 
Euclidean norm of the dipole components for each 𝐴𝐴 𝐯𝐯𝐢𝐢 (Figure 4c). It can be observed that higher right singular 
vectors actually have larger dipole norms than lower ones. In this example, the ratio between the norms of the 
64th and 1st, 65th and 2nd, and 66th and 3rd singular vectors range between 3.0 and 4.7. However, because the 

𝐴𝐴 𝐯𝐯𝐢𝐢 ′s are scaled by the reciprocal of the corresponding singular values, we observe a fast increase (power law) in 
the contribution of higher order terms to the net moment. The same ratios computed with scaled right singular 
values range from 200 to 430! That means that any noise component with non-negligible projection onto the 
highest left singular vectors 𝐴𝐴 𝐮𝐮𝐢𝐢 will lead to significant contributions to the net moment, potentially compromising 
the accuracy of the estimate. Thus, it is critical to tame the scaling of the highest-order right singular vectors that 
contribute to the net moment. That is the goal of introducing a regularization scheme (Figure S1 in Supporting 
Information S1 illustrates how varying the regularization parameter LREG affects the model and its ability to repro-
duce the field map data, which is traded off for stabilizing the net moment estimates and improving accuracy in 
the presence of noise).

Notice that the incorporation of regularization only entails relatively minor changes to the basic algorithm 
described in Section  2. Specifically, step (3.a.2) involves solving the linear least-squares problem using a 
pseudoinverse based on the truncated SVD associated with a prescribed LREG, which is typically chosen in 
advance  depending on the SNR and noise characteristics of the magnetic data being analyzed. In addition, step 
(5) may require the use of auxiliary metrics to help pick out the optimal solution as the range of model degrees 
producing stable estimates can become quite narrow at higher noise levels.

The greater complexity in regularizing this particular inverse problem stems from the fact that it is a mixed 
linear-nonlinear inverse problem in which the regularization factors for the linear part (model degree and SVD 
truncation point) and nonlinear part (origin location) are not decoupled. As a result, at least two of those factors 
are operating at any given time and interacting with one another. Nevertheless, we can successfully estimate net 
magnetic moments, as will be demonstrated in the next two sections. Mixed linear-nonlinear inverse problems are 
also found in other branches of geophysics (e.g., Fukuda & Johnson, 2010) and generally require more sophisti-
cated regularization.

3.  Application to Synthetic Data
To test the method and characterize its performance, we used six synthetic magnetizations to generate simulated 
field maps (Table 2). These maps were then corrupted with prescribed amounts of synthetic additive Gaussian 
white noise and experimental SQUID microscope noise [the latter is more complex and combines different noise 
components (Figure S8 in Supporting Information  S1 and Section  2.3.3)]. Such data allow us to understand 
sources of inaccuracies and assess the overall performance of the moment estimation algorithm given that we 
know the exact magnetic moment of the source distribution. Based on this characterization, we demonstrate 
the method with experimental data in the next section (Table S2 in Supporting Information S1 summarizes the 
parameters and algorithms used to obtain the moment data shown in the figures).

Testing the technique with different types of noise, particularly actual instrument noise measured under typical 
experimental conditions, is critical for assessing the performance of the technique and optimizing it for process-
ing experimental data. In most of our tests, we use a sensor-to-sample distance of 25 μm, which is intermediate 
between those in SQUID microscopy and those in higher resolution non-cryogenic techniques, such as QDM 
and MTJ microscopy (see Table 1). The sensor-to-sample distance is, itself, not particularly critical beyond its 
potential effect on the SNR; instead, the ratio between sample dimensions and sensor-to-sample distance and 
between mapping area dimensions and sensor-to-sample distance are the key quantities (Figure 1). Multiplying 
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Figure 3.  Select left singular vectors of a singular-value decomposition (SVD) obtained for the moment estimation of the same field map of Source A shown in 
Figure 2. Vectors are ordered according to non-increasing corresponding singular values (see Figure 4b). Notice similarities and differences between the left singular 
vectors and the multipole components shown in Figure 2, with the left singular vectors corresponding to linear combinations of multipole components. Singular vectors 
shown in arbitrary units, as output by the SVD algorithm.
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all dimensions by a constant essentially does not change the moment estimation problem except for an amplitude 
scaling factor provided the SNR does not change. Thus, a 10 μm cubic source mapped on a 100 × 100 μm 2 planar 
grid 25 μm above this source is similar to a 100 μm cubic source mapped on a 1 × 1 mm 2 planar grid 250 μm 
above that source, such that the results can be conveniently scaled up or down.

3.1.  Noiseless Data

We begin by testing the method with noiseless data. No regularization is introduced, as it is not necessary to stabi-
lize the moment estimation process. This also allows us to understand the impact on accuracy of subsequently 
incorporating our regularization scheme into the inverse problem. We begin our analysis with Source A (see 
Section 2.4, Table 2, and Figures 2–4). We quantify the percent error in the estimation of the net moment by 
vector-subtracting the true magnetic moment, 𝐴𝐴 ⃖⃖⃗𝑚𝑚 , from the moment estimate, 𝐴𝐴 ⃖⃖̃⃗𝑚𝑚 , and subsequently normalizing 
the magnitude of this difference by the magnitude of the true magnetic moment:

𝜀𝜀𝑚𝑚 =
|
⃖⃖̃⃗𝑚𝑚 − ⃖⃖⃗𝑚𝑚|

|⃖⃖⃗𝑚𝑚|
× 100% .� (20)

This error metric has the advantage of quantifying discrepancies in both magnitude and direction and corresponds 
to the (normalized) distance between the estimate vector and the true moment vector. Notice that, in practice, this 
metric cannot be computed for experimental data as the true magnetic moment is unknown and is, in fact, the 
vector quantity we seek to estimate as accurately as possible from the magnetic data. Discrepancies between the 
model field map, 𝐴𝐴 𝑏̃𝑏 , and the true field map, 𝐴𝐴 𝐴𝐴 , are quantified by means of normalized residuals:

𝜀̂𝜀 =

√

√

√

√

𝐾𝐾
∑

𝑘𝑘=1

(

𝑏̃𝑏𝑘𝑘 − 𝑏𝑏𝑘𝑘

)

2

∕

√

√

√

√

𝐾𝐾
∑

𝑘𝑘=1

𝑏𝑏
2
𝑘𝑘
.� (21)

Figure 4.  Singular values and components of select right singular vectors for the singular-value decomposition used in 
Figure 3, which was obtained for the same field map of Source A shown in Figure 2. (a) First three components of select right 
singular vectors 𝐴𝐴 𝐯𝐯𝐢𝐢 , here denoted by 𝐴𝐴 𝐴𝐴

′
𝑧𝑧 , 𝐴𝐴 𝐴𝐴

′
𝑥𝑥 , and 𝐴𝐴 𝐴𝐴

′
𝑦𝑦 . Shown are the components of the 1st, 2nd, 3rd, 64th, 65th, and 66th right 

singular vectors. (b) Spectrum of singular values showing no clear gap and ∼10 4 decay in magnitude. (c) Norm of the dipole 

components for each right singular vector, 𝐴𝐴

[

(𝑚𝑚′
𝑧𝑧)

2
+ (𝑚𝑚′

𝑥𝑥)
2
+
(

𝑚𝑚
′
𝑦𝑦

)2
]1∕2

 . Norm for unscaled right singular vectors shown in blue 
and norm for right singular vectors scaled by the reciprocal of the corresponding singular values shown in orange.
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By normalizing the residuals, we can readily compare results for different sensor-to-sample distances and differ-
ent sources.

Results for the noiseless case for Source A with different sensor-to-sample distances are shown in Figure 5. The 
larger the sensor-to-sample distance, the lesser the contribution from high-order multipoles to the field, which 
is demonstrated by the faster convergence of the moment estimates in those cases. This stems from the fact that 
the 𝐴𝐴 (𝑎𝑎∕𝑟𝑟)𝑛𝑛+2 terms in Equation 13 decay faster with increasing n as r grows. Therefore, we observe a decrease 
in convergence rate as the sensor-to-sample distance is close to or smaller than the distance between the two 
magnetic dipoles. This is expected given that an increasingly higher number of multipoles is needed to reproduce 
the fine features present in the map in those cases. We also notice more pronounced oscillations in the error 

Figure 5.  Net moment estimation results for Source A (noiseless case) with varying multipole model degree using simulated field maps at different sensor-to-sample 
distances. (a) Simulated Bz field map for a sensor-to-sample distance of 10 μm. See Figure 2 for a simulated field map corresponding to a sensor-to-sample distance of 
25 μm. (b–e) Model field for select model degrees [1 (dipole), 5, 10, 26, respectively]. (f–i) Difference (residuals) between the model field maps (b–e) and the original 
field map shown in (a). (j) Net moment estimation error as a function of model degree for different sensor-to-sample distances. Solid, dashed, and dotted magenta lines 
represent 10%, 5%, and 2% thresholds for the moment estimation error, respectively. Red outline circles indicate moment estimation errors corresponding to select 
model degrees for the maps shown in (b–e).
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curves as the sensor-to-sample distance decreases. Comparable results were 
observed for Source B [composed of two dipoles with same magnitude and 
direction as those in Source A but displaced vertically (i.e., in the z direction) 
instead of horizontally; Figure S2 in Supporting Information S1) and Source 
C (uniformly magnetized square thin slab; Figure S3 in Supporting Informa-
tion S1]. Differences in convergence rates are associated with distinct spatial 
decays due to the particular multipole content of a given source. For instance, 
Source C decays less rapidly with distance than Source B. Because it consists 
of a uniformly magnetized extended region instead of a small number of point 
sources magnetized in different directions, an infinite number of identical 
point sources are integrated, leading to a slower decay. (For distances that are 
large compared to the size of the magnetized region, the field decay becomes 
comparable to that of a dipole, as expected.) However, for a sensor-to-sample 
distance of 10 μm, Source C converges faster than Source A owing to its 
comparatively lower multipolar content.

One point that should be emphasized is that this technique will generally not 
recover the actual sensor-to-sample distance that was used in the mapping of 
a sample. As discussed in the Introduction and in Section 2, the location of 
the origin of the multipole expansion cannot be generally constrained by the 
magnetic data. For a truncated expansion, a certain location will provide the 
best representation of the measured field by the multipole model. To achieve 

that, the origin is often placed by the optimization algorithm at a deeper location so as to ensure that the truncated 
multipole expansion can adequately represent the data. We illustrate this point for Source A (noiseless case) with 
a nominal sensor-to-sample distance of 25 μm (Figure S4 in Supporting Information S1 and Figure 5).

Next, we test how the algorithm performs for a purely dipolar source while using higher degree models. We are 
motivated by the fact that the multipole content of a given experimental distribution is not known beforehand, 
such that it is important to understand whether overfitting can occur that might impact the estimation accuracy. 
While we expect such effects to be more pronounced when inverting noisy data, tests with noiseless data can 
reveal fundamental problems that may exist even under the most favorable conditions. Given that the field decay 
and multipole content of a magnetic dipole do not change with sensor-to-sample distance, we only test the case of 
a sensor-to-sample distance of 100 μm (Figure 6). We notice that, despite variations in the normalized residuals, 
the moment estimation error is very low and virtually constant for a range of model degrees. In addition, the 
residuals highest levels are essentially negligible (10 −8). This suggests that the method is somewhat robust to the 
choice of model degree, provided the latter is sufficient to adequately characterize the magnetization.

3.2.  Noisy Data

We now introduce different amounts of noise contamination into the simulated field maps to characterize its impact 
on estimation accuracy and test our regularization strategy. We choose Source A with a 25 μm sensor-to-sample 
distance for these tests as this distance is comparable to the separation of the two dipoles in that test source, 
leading to a moderately slow convergence of the multipole expansion (see Figure 5). Following Section 2.3.4, we 
expect that the ability to fit and recover higher order multipoles is directly related to the noise level present in the 
magnetic data: the higher the noise, the more truncation of the multipole expansion and/or of the SVD is needed 
to avoid excessive noise magnification, which has a negative impact on net moment estimation.

To simulate spatially distributed sensor noise, we start by adding different levels of Gaussian white noise (with 
zero mean) to the noiseless field maps to produce prescribed SNRs, where

SNR = 10 log10

(

𝑃𝑃signal

𝑃𝑃noise

)

= 10 log10

(

𝜎𝜎
2
signal

𝜎𝜎
2
noise

)

,� (22)

and 𝐴𝐴 𝐴𝐴signal and 𝐴𝐴 𝐴𝐴noise denote the power [i.e., energy per time interval or, equivalently, the square of its 
root-mean-square (RMS) level] of the signal and the power of the noise, respectively, and 𝐴𝐴 𝐴𝐴

2
signal

 and 𝐴𝐴 𝐴𝐴
2

noise
 denote 

Figure 6.  Net moment estimation error as a function of model degree for a 
test source comprised of a single magnetic dipole (Source D, noiseless case). 
Only one sensor-to-sample distance (100 μm) was tested as results do not 
depend on that quantity. Moment estimation error shown in blue (left axis) and 
normalized residuals shown in orange (right axis). Inset: synthetic Bz field map 
for Source D at a sensor-to-sample distance of 100 μm that was used for these 
inversions.
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the variance of the signal and the variance of the noise. Although white noise may be a somewhat simplistic 
noise model for most magnetic sensors (e.g., SQUIDs, MTJs, Hall-effect, GMR/GMI), it is adequate for others 
(e.g., QDM) and has the advantage of possessing useful mathematical properties, as discussed in Section 2.3.3. 
Because our signal (i.e., noiseless field map) always has approximately zero mean owing to the properties of 
magnetic fields of sources with finite dimensions, we use the ratio of variances as a measure of SNR.

SNRs are typically defined in terms of ratios of power given that many signals, such as sinusoids, have infinite 
energy (i.e., infinite L2 norm) as they are not square integrable over their whole extension. In addition, the 
definition involves RMS values as those capture the average behavior of the signal within a time interval, whereas 
amplitude is strictly a quantity defined by just one or two points in the  signal depending on the definition used. 
Notice that an SNR of 10:1, for instance, means that the power of the signal is 10 times greater than that of the 
noise. In terms of amplitudes, it means the amplitude of the signal is roughly 𝐴𝐴

√

10 ≃ 3.2 times greater than that of 
the noise for sinusoids. Clearly, the relationship between amplitude and RMS value strongly depends on the type 
of signal/noise under consideration. For instance, white noise can have very large spikes at particular instants/
locations due to the statistical nature of Gaussian distributions. A rule-of-thumb factor of 6.6 to convert from 
RMS to peak-to-peak amplitude is often used for white noise with the caveat that 0.1% of the time the noise level 
may exceed that amplitude.

We compare (Figure 7) five different SNRs: ∞ (noiseless), 100:1, 10:1, 3:1, and 1:1. In our experience, SNRs 
below 10:1 represent significant amounts of noise contamination, with a SNR of 1:1 representing the practical 
limit for the detectability of the magnetization's field. Unlike the noiseless case (blue curve in Figure 7j), for 
which the moment estimation error continues to decay on average with increasing model degree, there is a point 
in the error curves past which the error levels off or increases, often subsequently displaying larger oscillations 
(Figure 7j). (No SVD truncation regularization is introduced yet, as we first want to assess how moment estima-
tion accuracy is impacted by noise.) Similarly, the normalized residuals show a slower reduction with increasing 
model degree past a certain degree (Figure 7k), which corresponds to the situation where correlated features 
have been removed and residuals continue to decline mostly by the cancellation of noise in the central region of 
the map. This is best evidenced at very poor SNRs (Figures 7a–7i, inset in Figure 7k). Comparable results for 
moment estimation error were obtained for Source B (Figure S5 in Supporting Information S1) and Source C 
(Figure S6 in Supporting Information S1).

Next, we analyze how noise contamination impacts the ability of higher degree models to accurately estimate the 
magnetic moment of sources with low multipolar content. We add five different noise levels to the field produced 
by Source D (dipole) and plot curves for moment estimation error as a function of model degree (Figure 8a) and 
for the normalized residuals error as a function of model degree (Figure 8b). Comparison between Figures 8a 
and 7j shows a steep rise in moment estimation error with model degree, suggesting that models with increas-
ingly higher order than necessary to accurately model the data do a progressively poorer job of estimating net 
moment of sources with low multipole content in the presence of noise. This is due to reduced projections of the 
dipole map onto higher-order left singular vectors. The behavior of normalized residual curves is also different 
(compare Figures 8b and 7k), with no region of rapid improvement in residuals at lower degrees; instead, residu-
als steadily decay very slowly owing only to the fitting of noise in the central region by higher order multipoles. 
Such contrasting behavior indicates that the overall characteristics of residuals decay may be a good indicator of 
multipole content and help avoid unnecessary computations with higher degree models.

Although these tests reveal important characteristics of the method's performance, we do not have access to the 
estimation error in practice given that the true net moment is not known. The question then becomes how to 
pick the optimal model degree that best estimates the net moment of a given magnetic field map. Moreover, can 
we improve estimation accuracy in light of the theoretical results regarding the regularization of the solutions 
discussed in Section 2.3.4. It is encouraging that even under contamination with large amounts of white noise, we 
can achieve, in principle, moment errors below 10% (see purple and green curves in Figure 7j). Still, the accuracy 
is somewhat below what is achieved by single-dipole fitting of nearly dipolar sources [see (Lima & Weiss, 2016) 
and initial point of the purple and green curves in Figure 8a]. While this decrease in accuracy is expected as 
more multipole terms are introduced in the model, proper regularization may often further improve accuracy and 
reduce scatter in the estimates.

To test the effect of regularization, we take the field map of Source A with an SNR of 3:1 (Figure 9). This repre-
sents a very poor SNR that is still above the detection limit (i.e., SNR of 1:1). Compared to the unregularized case 
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(LREG = 0), there is an improvement in the accuracy by a factor of about 3 when truncating the SVD, bringing it 
to the 2% threshold or below for these test data.

While it is reassuring that the method can output solutions with low estimation error and tame the pernicious 
effect of noise on the net moment estimates with added regularization, it leads to the important question of how 
to select the optimal solution. Specifically, how to choose the best model degree given a fixed SVD truncation. 
For that, we need to find a proxy for the moment estimation error that can be computed from the properties of the 
solution and/or the residuals, which are the available data when using experimental field maps. Unfortunately, 
this is a complicated issue due to the characteristics of this inverse problem. As we explained in Section 2, the 
model degree is one of the three regularization factors acting on this inverse problem, the other two being the 
SVD truncation and the location of the origin for the multipole expansion. We tested numerous strategies includ-
ing the traditional L-curve criterion and various regularization terms (e.g., norm of the dipole coefficients, norm 
of all recovered multipole coefficients, norm of all multipole coefficients above degree 1, and absolute value of 
the vertical coordinate of the origin).

Figure 7.  Net moment estimation results obtained from synthetic magnetic field maps of Source A corrupted by additive Gaussian white noise. Results are shown 
for varying model degree and different signal-to-noise ratios (SNRs). (a) Simulated Bz field map for a sensor-to-sample distance of 25 μm and a very poor SNR of 1:1 
used for the inversions in (b–k). See Figure 2a for a simulated field map corresponding to the noiseless case. (b–e) Model field for select model degrees [1 (dipole), 7 
(minimum estimation error), 14, and 22, respectively]. (f–i) Difference (residuals) between the model field maps (b–e) and the original field map shown in (a). Notice 
that noise is progressively subtracted from central area of the map for high-degree models owing to overfitting. Moment estimation error (j) and normalized residuals 
(k) as a function of model degree for 5 different SNRs. Solid, dashed, and dotted black lines in (j) represent 10%, 5%, and 2% thresholds for the estimation error, 
respectively. Inset in (k) shows a separate view of normalized residuals curve for a SNR of 1:1 (extending to degree 22). Notice that residuals continuously decrease 
with increasing model degree, albeit more slowly for higher degrees, due to noise cancellation in the central region of the map. Red outline circles indicate normalized 
residuals corresponding to select model degrees for the maps shown in (b–e).
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In the L-curve criterion (Hansen & O’Leary, 1993), a plot of the norm of the solution versus the norm of the 
residuals is constructed for different values of the regularization parameter so as to identify a near-optimal value 
for the latter (Hansen, 1987). The L-curve's knee indicates the optimal tradeoff between matching of the data (i.e., 
small residuals) and minimizing the norm (i.e., “size”) of the solution. Owing to the concurrent mechanisms asso-
ciated with these 3 factors and the nonlinear nature of the problem, most of these traditional approaches did not 
yield consistent results (e.g., L-curve approach using norm of all multipole coefficients as regularization term, as 
shown in Figure S7 of the Supporting Information S1). To tackle this problem, we need to investigate different 
types of noise components that may be present in the magnetic data as well as imperfections in the measurement 

process, such as amplitude offset. We return to this discussion in Section 3.5, 
once we have considered these other elements and also the idea of using 
upward continuation for regularization purposes.

3.3.  Upward Continuation Strategy for Improving Regularization

One potential strategy for dealing with noise magnification issues in the 
computation of multipole coefficients is to incorporate upward continua-
tion of field maps prior to net moment estimation. The idea is to spatially 
low-pass filter the original map to reduce the model degree required to 
adequately reproduce the magnetic data and estimate net moment. While this 
has been successfully used in moment estimation with single-dipole models 
(Fu et al., 2014, 2020), the end result is not so straightforward for multipole 
models.

First, owing to this significant overlap between the spectrum of spatial noise 
and the spectrum of the field produced by magnetic sources, basic linear filter-
ing techniques (including upward continuation) are generally unable to sepa-
rate the noise component from the signal of interest and no clear increase of the 
SNR may be realized. This means that any improvements introduced by upward 
continuation are associated with enabling lower degree models to adequately 
represent the data and not through SNR increase due to noise filtering.

Second, the process of calculating an upward-continued field map, despite 
being numerically stable, introduces artifacts in the data. Such artifacts will 
negatively impact the accuracy of net moment estimation even in the absence of 
noise. Two main causes for this are (a) the finite extent of the mapping area and 

Figure 8.  Net moment estimation results for Source D (single dipole) with varying model degree for different signal-to-noise ratios (SNRs). Moment estimation error 
(a) and normalized residuals (b) as a function of model degree for 5 different SNRs. Solid, dashed, and dotted black lines represent 10%, 5%, and 2% thresholds for the 
estimation error, respectively. Normalized residuals for noiseless magnetic data are shown as an inset in (b) owing to the >8 orders of magnitude difference in residuals 
magnitude compared to noisy data.

Figure 9.  Net moment estimation error as a function of model degree for 
Source A for a sensor-to-sample distance of 25 μm and a SNR of 3:1. Each 
curve corresponds to a different truncation point for the singular-value 
decomposition, as determined by the regularization parameter LREG. Note that 
no regularization is introduced for LREG = 0. Curves start at increasing model 
degrees for visual clarity, since enough multipole terms are needed in the 
regularized case in order to add a set number of singular values and singular 
vectors to the model. Solid, dashed, and dotted black lines represent 10%, 5%, 
and 2% thresholds for the estimation error, respectively. Inset shows the field 
map of Source A corrupted with Gaussian white noise, which were the data 
used in this analysis.
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(b) the discrete spacing of the measurement points. If spatial sampling of the 
field map is performed adequately, (a) is the predominant source of error in the 
continued data. It is possible to derive analytical expressions for the error intro-
duced by a finite mapping area and by a finite step size in the upward continua-
tion of a magnetic field map (see Text S1 in Supporting Information S1). Such 
expressions show how the error grows with the amount of upward continuation 
and how the magnetic field lying outside the mapping area affects the error. In 
addition, they show that the error intrudes into the central region of the field 
map as upward continuation is performed over larger distances.

The combined effect of all these factors on the net moment estimation can 
be seen in Figure 10. Whereas upward continuation does indeed improve the 
accuracy of the moment estimations for a single dipole model (i.e., degree 
1), it may be less beneficial or even detrimental, particularly when larger 
amounts of upward continuation are introduced. For magnetizations that are 
relatively homogeneous, it is generally preferable to use a multipole expan-
sion model with a higher degree than to upward continue the field map (see 
Figure 10), unless the SNR of the field map is very poor. On the other hand, 
inhomogeneous magnetizations, particularly in direction, and those whose 
dimensions are larger than the sensor-to-sample distance may require a high 
degree multipole model to properly represent their magnetic field maps and 
to obtain an estimate of the moment with low error, even in the noiseless 
case.

In such situations, upward continuation of the magnetic field map prior to 
estimating the moment offers clear advantages (Figure  11). First, we may 
obtain moment estimates of comparable accuracy at lower multipole model 
degrees, which is particularly helpful for noisy maps of complex sources. 
Second, a much smaller amount of continuation is required to achieve low 

estimation error compared to a dipole model, thus obtaining higher moment estimation accuracy. As can be seen 
in Figure 11, magnetization distributions in a fully demagnetized state can be particularly challenging to estimate 
net moment (compare blue and orange traces in Figure 11d and residuals evolution with increasing degree in 
Figures 11a and 11b). This example also illustrates a common misunderstanding: magnetizations in a demag-
netized state (i.e., no coherent alignment of magnetic domains) are often clearly visible in magnetic microscopy 
maps such that low net moment does not necessarily imply very weak magnetic fields. In fact, in this example, 
the difference in magnetic field magnitude between a magnetized and demagnetized state is merely a factor of ∼2.

When introducing upward continuation (yellow, purple and green traces in Figure 11d), we observe that the 
estimation error for upward continued data increases rapidly past a certain degree, where a minimum in the 
estimation error is realized. The effects of artifacts introduced by continuation into the magnetic map become 
more dominant once the model is able to account for the main features in the map and noticeable residuals appear 
near the edges of the residuals map (e.g., model degree 3 in Figure 11c). Further increasing the model degree will 
result in upward continuation artifacts being modeled (e.g., model degree 10 in Figure 11c), negatively impacting 
the accuracy of moment estimates. In practice, deciding whether or not upward continuation is needed depends 
on a visual inspection of the field map to evaluate magnetization inhomogeneity and of the residuals map for 
solutions obtained with the original magnetic data to determine whether or not a good fit is being realized at 
moderately low model degrees (e.g., <15). For typical mapping areas used in SQUID microscopy (such as those 
shown in this paper), which capture most of the field decay, upward continuing the data by an amount greater than 
one or two times the sensor-to-sample distance may often lead to noticeable inaccuracies in moment estimation, 
even in the absence of extraneous magnetic sources near the edges of the map.

3.4.  Offset Sensitivity

When dealing with experimental data, it is important to ensure that there is not a spurious amplitude offset (i.e., 
additive constant) introduced in the field maps as it can negatively impact moment estimation. Such artifacts, 
even if small, may be nearly indistinguishable (within the mapping area) from fields due to a deeper source and 

Figure 10.  Effect of upward continuation of the magnetic data on the moment 
estimation error for different amounts of continuation. Data correspond to 
Source A with varying model degree and no singular-value decomposition 
truncation for a SNR ratio of 3:1 and a sensor-to-sample distance of 25 μm 
(compare with Figure 9). For typical mapping areas, upward continuing by an 
amount larger than 1–2x the sensor-to-sample distance yields inferior moment 
estimates. Notice, however, that the dipole model (degree 1) is generally more 
robust to upward continuation errors. Its accuracy improves for increasing 
continuation amounts up to the point where upward continuation errors 
become large enough and estimation error begins to increase, which typically 
occurs at 2–4× nominal sensor-to-sample distance.
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Figure 11.
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therefore will negatively influence the moment estimation. However, because it is not realistic to expect perfect 
offset cancellation during the measurement and preprocessing stages, we need to incorporate mechanisms to 
handle any residual amplitude offset in the magnetic data.

All of our examples so far have involved magnetic data contaminated by Gaussian white noise with zero mean, 
which may not fully represent the noise components found in many magnetic sensors used in magnetic micros-
copy, as discussed in Section  2.3.3. The most noticeable manifestation of 1/f noise is a low-frequency drift 
observed on the output sensor, which means that the baseline of the output signal changes as the sample's field is 
mapped. Whereas such imperfections can be ameliorated by pre-processing the data (e.g., subtracting the average 
of the first or last few points in each scan line), an effective residual amplitude offset in the magnetic data may 
persist, particularly when the field map is cropped to analyze a certain feature or to decrease the influence of 
noise and/or surrounding contamination.

While single-dipole models for net moment estimation are somewhat insensitive to such offsets, multipole expan-
sion models are much more affected by such imperfections owing to the increased number of degrees of freedom 
for fitting the data, such that moment estimates can easily become dominated by those artifacts. We successfully 
tackled this issue by introducing a constant term into the multipole expansion and recovering it through the 
general linear-least squares procedure used to solve Equation 14. Its implementation is somewhat straightforward 
and involves adding an extra column with 1's to matrix A and a corresponding element to the coefficient vector 
w, as seen in Equation 24.

𝐵𝐵𝑧𝑧(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = 𝐶𝐶 + 𝜇𝜇0

𝑁𝑁
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2
𝑛𝑛
∑

𝑚𝑚=0

[

(𝑛𝑛 + 1)cos(𝜃𝜃)𝑃𝑃𝑚𝑚

𝑛𝑛 (𝜃𝜃) + sin(𝜃𝜃)
𝜕𝜕𝜕𝜕

𝑚𝑚

𝑛𝑛 (𝜃𝜃)

𝜕𝜕𝜕𝜕

]

(𝑔𝑔𝑚𝑚

𝑛𝑛 cos𝑚𝑚𝑚𝑚 + ℎ
𝑚𝑚

𝑛𝑛 sin𝑚𝑚𝑚𝑚),� (23)

[

𝐀𝐀 𝐀𝐀K

]
⎡

⎢

⎢

⎣

𝐰𝐰

𝐶𝐶

⎤

⎥

⎥

⎦

= 𝐛𝐛.� (24)

The main drawback of this approach is the change in the structure of matrix A and the impact on the singular 
vectors and singular values stemming from adding a constant term to the multipole expansion. However, we 
have observed that the main effect is the creation of a first left singular vector that is a constant function, which 
is then followed by singular vectors very similar to those for the uncompensated case (which are shown in 
Figure 2). There typically is a noticeable gap in the singular values between the first one, corresponding to the 
constant left singular vector, and the remaining ones associated with the regular spherical harmonic multipole 
expansion.

Our numerical experiments involving noiseless magnetic data with added offsets show that the overall 
performance is only slightly degraded by incorporating this offset compensation scheme (Figures 12a–12c). 
In particular, significant errors in both magnitude (orange solid line) and direction (green dashed line) are 
observed when magnetic data have an amplitude offset and moments are estimated without offset compen-
sation (Figure 12d). Notice that the errors are much smaller for the dipole model (degree 1), particularly in 
direction, illustrating the reduced sensitivity of that model to offset in the data. However, offset compensation 
can successfully correct the moment estimates obtained by the multipole model in the presence of offset with 
negligible impact to estimation accuracy (compare blue and yellow solid lines, and light blue and purple 
dashed lines in Figure  12d). This example highlights the critical importance of offset compensation when 
processing experimental data.

Figure 11.  Moment estimation results for Source E and Source F, each comprised of 2,000,000 dipoles of equal intensity randomly distributed in a 
100 × 100 × 100 μm 3 volume and whose directions were randomly chosen to uniformly sample the unit sphere. Source E has 1.5% magnetization efficiency along 
a prescribed direction (inclination = −12.6°, declination = 333°), whereas Source F has zero magnetization efficiency (i.e., it is in a fully demagnetized state). 
Magnetization efficiency represents the degree of alignment of the magnetization in the direction of the applied field. No noise was added to these maps and no 
singular-value decomposition truncation was used in the inversion. (a) Simulated Bz field map of Source E (left) for a sensor-to-sample distance of 25 μm, followed 
by residuals for select model degrees. (b) Simulated Bz field map of Source F (left) for a sensor-to-sample distance of 25 μm, followed by residuals for select model 
degrees. (c) Upward continuation of the map shown in (B, leftmost panel) to yield an effective sensor-to-sample distance of 125 μm, followed by residuals for select 
model degrees. Notice larger residuals near the map edges due to upward continuation inaccuracies. (d) Moment estimation error as a function of model degree for 
Source E (blue), and Source F with no upward continuation (orange), with upward continuation of 25 μm (yellow), 50 μm (purple), and 100 μm (green). Colored circles 
in the blue, orange, and green curves indicate model degrees with corresponding residual maps shown in (a), (b), and (c), respectively. Solid, dashed, and dotted black 
lines represent 10%, 5%, and 2% thresholds for the estimation error, respectively.
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3.5.  Noisy Data With 1/f Component

To properly assess the performance of the moment estimation technique using scanning magnetic microscopy 
data, we added measured SQUID noise to our synthetic sources. We opted to use real noise measurements given 
that the simulation of 1/f noise is not trivial and may mask some features present in the 1/f noise component of our 
SQUID sensor. In addition, measuring the actual output noise captures all components present in the instrument's 
output signal and not just the 1/f noise.

Figure 12.  Comparison between net moment estimates obtained using models with and without offset compensation (noiseless data, no regularization, offset 
compensation). (a) Simulated Bz field map of Source A for a sensor-to-sample distance of 25 μm with no added offset (DC). (b) Simulated Bz field map of Source A for 
a sensor-to-sample distance of 25 μm with an added amplitude offset of +14 μT. (c) Moment estimation error for different model degrees for data shown in (a) using an 
uncompensated model (blue trace; see Figure 5, noiseless case) and for offset data shown in (b) using a compensated model. Only a slight decrease in accuracy results 
from introducing offset compensation into the model. Black lines represent 10% (solid), 5% (dashed), and 2% (dotted) error thresholds. (d) Breakdown of the estimation 
vector error shown in (c) as magnitude absolute error (solid lines) and directional error (dashed lines). Also shown is the case of uncompensated model processing 
magnetic data with added offset, which results in very large estimation errors (solid orange line, dashed green line). Notice that offset compensation successfully 
corrects both magnitude and direction estimates, and that the dipole model (degree 1) is noticeably less sensitive to amplitude offset. (Coincidentally, the offset helped 
improve the estimate moment in this particular case.)
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To test the performance for different noise realizations, we measured a large map of a non-magnetic sample 
while displacing the scanning stage as in a real mapping procedure with the SQUID readout electronics set to its 
most sensitive range (Figure S8 in Supporting Information S1). We created different realizations of the SQUID 
microscope noise by cropping a randomly chosen region of the large noise map that matched the size of the 
synthetic  source map. The amplitude of the map is then scaled to provide the prescribed SNR. We use the inter-
quartile range in Equation 22 instead of the variance to better quantify dispersion in actual experimental noise. 
Note that this procedure does not reproduce exactly the noise observed in a map of a given size, since the gap 
between adjacent time series segments may be bigger than in an uncropped map of the same size. Nevertheless, 
such differences are of secondary importance.

Different noise realizations lead to a spread in the recovered moments, as expected due to different projections 
of the noise component onto the left singular vectors and the stochastic nature of the noise. Figure 13 shows the 

Figure 13.  Magnetic net moment estimates obtained using offset compensation from simulated magnetic field maps of Source A corrupted by real superconducting 
quantum interference device (SQUID) microscope noise. (a) Moment estimation error as a function of model degree for two particular noise realizations (solid and 
dashed lines) and four different SNRs (represented by distinct colors). Variations seen between the results for the two noise realizations represent the typical range 
of spread observed for a series of repeated maps of the same source. (b) Left column: simulated Bz maps of Source A for a sensor-to-sample distance of 25 μm with 
added SQUID microscope noise to yield SNRs of 3:1 (top two maps) and 1:1 (bottom two maps). Central column: Bz maps produced by the multipole expansion 
model at select model degrees (degree 8 for top two maps, degree 9 for bottom 2 maps). Notice the yellowish tinge in the third map from the top, which results from 
compensating an offset introduced by the noise. Right column: residuals (difference) between synthetic maps (left column) and modeled maps (central column). First 
and third rows correspond to one noise realization (dashed lines in a, c and d), while second and fourth rows correspond to the other noise realization (solid lines in a, 
c and d). Pink circles in (a, c and d) highlight results associated with top two rows; gray circles in (a, c and d) highlight results associated with bottom two rows. (c, d) 
Breakdown of the moment estimation error into magnitude error (c) and directional error (d), following plotting conventions used in (a). Solid, dashed, and dotted black 
lines represent (a, c) 10%, 5%, and 2% thresholds for the estimation error, respectively; or 20°, 10°, and 5° thresholds for the directional error, respectively.
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moment estimation error for two different SQUID microscope noise realizations, chosen to illustrate the typical 
spread in moment estimates observed in a set of 10 repeat measurements. Whereas the moment estimation error 
quantifies the overall discrepancy in estimating the net moment vector, it is instructive to also look separately 
at the directional error and the magnitude error (absolute value) since these three quantities are non-linearly 
related to one another, such that the minimum of one quantity may not necessarily correspond to the minimum 
of the others. Given that 1/f noise usually has larger projections onto the left singular vectors and, consequently, 
a greater impact on estimation accuracy, it may be advantageous to devise other criteria for solution selection 
that aim to pick the solution with smallest directional error or the one with the smallest magnitude error, which-
ever may be beneficial depending on the application. We find that even under severe noise contamination (e.g., 
SNR of 1:1), errors of a few percent may be obtained for some noise realizations. This suggests that additional 
preprocessing steps of the magnetic data targeting noise reduction may further help decrease the overall spread 
in the estimates and improve accuracy. Additionally, for maps with very poor SNRs (e.g., below 3:1) it may be 
worth doing a small series of repeat measurements (∼2–6 maps) and averaging the moment estimates obtained for 
each map as a way to further improve accuracy and reduce scatter in the estimates stemming from noise (Borlina 
et al., 2020, 2021).

3.6.  Solution Selection Criteria

We tested many different strategies for solution selection, but the vast majority of them did not work satis-
factorily. Unlike a typical Tikhonov regularization, in which a penalty criterion is introduced to enforce some 
property of the solution (e.g., minimum norm or maximum smoothness) and a single parameter controls the 
amount of regularization introduced, the matrix in our linear-least squares problem is constantly changing at 
each step of the optimization. This makes decoupling the various regularization mechanisms that act in tandem 
(i.e., model degree, expansion origin, and SVD truncation) somewhat difficult. Given the complexities of mixed 
linear-nonlinear inverse problems, such as the one investigated in this paper, and the difficulty in devising selec-
tion criteria based solely on mathematical theory, we followed a heuristic approach to regularization, as is often 
the case in such types of inverse problems.

In particular, L-curve plots of the norm of the residuals versus norm of the solution can appear particularly 
unpredictable, sometimes full of zigzags and with no distinguishable pattern in some cases (Figure S7 in 
Supporting Information S1), while in others they exhibit their more familiar L-shape. One strategy that proved 
useful in this case to partially improve the visualization and reduce the occurrence of zigzags in the L-curves 
consists of sorting the data points such that the curve is plotted with increasing solution norm instead of 
increasing model degree. Nevertheless, L-curves by themselves did not seem to yield a consistent criterion to 
choose a solution. Plots of moment versus height, height versus residuals, moment magnitude versus model 
degree, among others, were similarly unsuccessful in pinpointing with consistency which solution is the opti-
mal solution.

One quantity that appears to lead to robust solution selection is the vector difference between consecutive moment 
estimates obtained with increasing model degree for a fixed SVD truncation (i.e., a constant LREG). More specif-
ically, the plot of the reciprocal of the norm of the vector difference versus model degree tends to peak around 
the optimal solution (Figure 14), indicating a somewhat stable solution between two consecutive steps. We chose 
the reciprocal of the norm as it is much easier to visually detect a peak in a curve than a slight dip, given that the 
reciprocal emphasizes changes in small values. For high SNRs, the solution tends to stabilize over a larger range 
of model degrees as noise effects are somewhat subdued. However, for increased noise levels, the solution may 
quickly stray off the optimal value.

The basic idea is to inspect side-by-side plots corresponding to different SVD truncation factors (typically, LREG 
ranging from 0 to 3 or 4) and check which seem to give the best indication of the optimal solution (Figure 14). In 
general, the greater the SVD truncation, the less rapid the variations the solutions will exhibit with varying model 
degree. However, care should be taken to not introduce excessive regularization that could impact accuracy. As 
customary, one should employ the least amount of regularization needed to stabilize the solutions.

It is clear from this example that sometimes multiple peaks may be present in some of those plots. While in 
general the highest peak corresponds to the optimal solution, this is not necessarily always true and examination 
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of auxiliary plots, such as residual maps for features corresponding to under-
fitting or overfitting, may help pinpoint which one of the peaks corresponds 
to the optimal solution. In particular, for non-zero LREG, a peak will tend to 
appear in the lowest model degrees (i.e., ≤LREG), which is associated with an 
increase in model order without a corresponding increase in the number of 
recovered coefficients. Additionally, the vector moment difference, by defi-
nition, yields one data point less than the number of estimates, and careful 
inspection of the plot is required to determine whether or not the dipole solu-
tion might be the optimal one. A workflow is presented summarizing the 
various steps involved in the selection of the solution (Figure 15).

4.  Results With Experimental Data
We further demonstrate the performance of the multipole fitting technique 
using two sets of experimental data. In both examples, to improve the accu-
racy of the estimates, raw field maps were pre-processed by mean-subtraction 
performed on individual scan lines to further reduce residual drift and offset, as 
discussed in Sections 2.3.3, 3.4, and 3.5. The first set is comprised of a series 
of maps obtained using the SQUID microscope housed in the Massachusetts 
Institute of Technology (MIT) Paleomagnetism Laboratory, corresponding to 
an 8-step alternating-field (AF) demagnetization sequence of two submilli-
meter basaltic glass impact spherules collected from the Lonar crater, India 
(Louzada et al., 2008; Weiss et al., 2010). They were first demagnetized to a 
peak AF field of 145 mT and then imparted a 200 mT isothermal remanent 
magnetization (IRM) in an arbitrary direction to ensure a near-dipolar individ-
ual magnetization. The two spherules were subsequently mounted sufficiently 
apart (>4 mm) on a nonmagnetic quartz disc to allow for individual mapping 
of each spherule without interference from the adjacent spherule. The orienta-
tion of the spherules was not preserved during the mounting process, such that 
each spherule carried a magnetization in an arbitrary direction. Although full 
maps of this sample cannot be adequately inverted using the spherical harmonic 
multipole expansion model owing to the very high aspect ratio of the source 
configuration, this arrangement is ideal for experimental validation and perfor-
mance assessment. By mapping each spherule individually, we are able to 
obtain independent net moment estimates for each source using our previously 
developed moment estimation technique based on single-dipole fitting (Lima 
& Weiss, 2016). Vector addition of the pair of dipole moment estimates at each 
AF step provides an accurate estimate for the net moment of the overall sample.

To determine the accuracy of the multipole fitting technique using these 
experimental data, we synthetically brought the two spherules close to each 
other by adding together cropped versions of the two individual maps. The 
center of each spherule was determined based on the maximum value of the 
corresponding total field map, which was calculated from the Bz field map 
following the procedure described in Lima and Weiss (2009). The Bz map of 
the first spherule was centered on that source, while the Bz map of the second 
spherule was centered on a point displaced 80 μm to the left and 80 μm to 
the top from the center of the second source. This displacement enhanced the 
multipolar nature of the combined field map, whereas cropping ensured  that 
every data point in the combined field map results from the addition of a 
corresponding data point in each individual map (Figure S9 in Supporting 
Information S1).

Figure 14.  Example of plots used in the selection of the optimal solution 
for different singular-value decomposition truncation factors ranging from 
LREG = 0 (no regularization, top) to LREG = 3 (higher regularization, bottom). 
Each plot shows the reciprocal of the norm of the vector difference between 
moment estimates versus model degree. Numbers in blue indicate the 
difference computed, while percentages in black indicate the (vector) moment 
estimation error of the solution with corresponding model degree. The optimal 
solution (represented by a black dotted vertical line) often corresponds to 
peaks in such plots, but auxiliary data may be required to resolve ambiguities. 
Moment estimates computed from a field map of Source A, at a 25 μm 
sensor-to-sample distance and contaminated with superconducting quantum 
interference device microscope noise (SNR of 3:1; see map on the top left of 
Figure 13b).
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We then applied the multipole fitting technique to estimate the net moment of each combined map capturing both 
spherules (Figure 16). We tested four regularization factors for each map (LREG ranging from 0 to 3), computing 
solutions with models of degree 1 through 15 in each case. Optimal solutions were selected according to the 
procedure described in Section 3.6. The vector endpoint diagram (Figure 16a) shows the projection of the net 
moment vector onto two orthogonal planes, while the equal-area plot (Figure 16b) shows an area-preserving 
projection of unit vectors representing moment direction on a sphere. Both plots show very good agreement 
between the two sets of independent estimates. Taking the dipole inversions set as the reference, the maximum 
(absolute) discrepancy in moment magnitude between estimates is −7.8% (AF 100 mT) and the minimum (abso-
lute) discrepancy is +1.2% (AF 40 mT). The maximum angular discrepancy is 3.6° (AF 200 mT) and the mini-
mum angular discrepancy is 0.9° (AF 40 mT). See Table S1 in Supporting Information S1 for tabulated values 
for each step and for individual dipole inversions of each spherule. We attribute part of the small discrepancy 
between estimates to the single-dipole inversions, given that the spherules are not perfectly dipolar, and part to 
the error in the multipole inversions. Considering that the SNR of the field maps in this set is estimated to range 
from 300:1 (IRM) down to 10:1 (AF 200 mT), the discrepancy between estimates in the first demagnetization 
steps is unlikely to originate primarily from noise sensitivity issues. The fact that in six of the eight demagnetiza-
tion steps, the single-dipole model produces higher magnitude estimates seems to suggest uniformly magnetized 
extended sources that are not perfectly spherical (and thus not perfectly dipolar) as a likely source of the small 
mismatch in magnitude (Lima & Weiss, 2016).

As typical of regularization strategies for inverse problems, solution selection criteria may have led to slightly 
sub-optimal picks at some demagnetization steps. The multipole fitting technique did output solutions that were 
even closer to the combined single-dipole estimates in a few cases. However, those were not chosen because we 

Figure 15.  Workflow for selecting optimal or near-optimal solutions. Inversion data collection tasks shown in blue, analysis 
tasks shown in green, and final selection/data output tasks shown in yellow. In case of ambiguity that cannot be resolved by 
analysis of residuals map and model field map, candidate solutions can be averaged. Predictably, the noisier the magnetic 
data, the harder it may become to identify an optimal solution. In particular, solutions may approach the true moment and be 
stable for just one or two model degrees in such cases.
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Figure 16.  Comparison between net moment estimates using the multipole fitting technique and a single-dipole technique for a pair of impact spherules from Lonar 
crater, India that were imparted a 200 mT isothermal remanent magnetization and progressively demagnetized using alternating fields. The two spherules were mounted 
adjacent to each other, but sufficiently apart such that they could be individually mapped. (a) Plot of the orthographic projections of the net moment vector obtained 
by the multipole fitting technique applied to combined individual field maps of each spherule (orange) and by first estimating the moment of each spherule separately 
with a dipole-fitting technique and subsequently adding the estimates together (blue). (b) Equal-area plot showing the projection of unit vectors on a sphere representing 
moment directions. Notice the very good agreement between directional estimates obtained with the multipole fitting technique (orange) and with the single-dipole 
fitting technique (blue). Mismatch in magnitude was smaller than 7.8% and directional mismatch was smaller than 3.6°. (c) Combined Bz maps of the two spherules 
for select demagnetization steps labeled in (a) and (b). Directional changes of the net moment during the 8-step AF demagnetization sequence [(b) and Table S1 in 
Supporting Information S1] resulted from the unequal rates of moment loss in the spherules. While the magnetization in Spherule #1 decayed by a total factor of ∼220 
during AF demagnetization, the magnetization in Spherule #2 decayed by a factor of just ∼45, with the latter also exhibiting greater directional stability at higher AF 
levels than the first. These maps were measured at a sensor-to-sample distance of ∼200 μm and were used to compute the multipole fitting inversions shown in orange 
in (a) and (b). Field data were bilinearly interpolated for visualization purposes only.
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wanted to pick solutions without bias stemming from knowledge of independent moment estimates, as would 
be the case in any paleomagnetic or rock magnetic study. In addition, for the reasons discussed in the previous 
paragraph, it is not clear that combined single-dipole estimates are necessarily closer, at each demagnetiza-
tion step, to the true moments than those obtained with multipole fitting. In truth, both set of estimates have 
errors, but the excellent agreement between them, the results with synthetic data, and previous validation of the 
single-dipole technique (Lima & Weiss, 2016) strongly suggest that such estimates are quite close to the true 
net moment.

The second set of experimental data is comprised of magnetic field maps associated with an AF demagnetiza-
tion sequence of subsamples from two dusty-olivine bearing chondrules from the meteorite Dominion Range 
(DOM) 08006, a CO carbonaceous chondrite (Figure 17). This analysis was part of a study (Borlina et al., 2021) 
demonstrating that chondrules carried an ancient magnetization acquired in the solar nebula prior to the accre-
tion of the meteorite's parent body. Those records can constrain the ancient magnetic fields present in the region 
of the solar nebula where the chondrules were formed. This particular analysis focused on demonstrating two 
aspects to support the primordial nature of the magnetization: (a) mutually oriented subsamples of the same 
chondrule should be magnetized in the same direction, and (b) the direction of the magnetization in mutually 
oriented chondrules should be randomly distributed on the unit sphere. Three of the four chondrules extracted 
from DOM 08006 were fragmented into two pieces to test whether (a) holds true. For all four chondrules, 
magnetic field data were obtained using the SQUID microscope magnetometer in the MIT Paleomagnetism 
Laboratory. Two of those chondrules (DOC 5 and DOC 6) exhibited predominantly multipolar behavior for 
their smallest subsamples (e.g., Figure 17a), making it difficult to reliably use single-dipole fitting moment 
estimation in those cases.

The AF demagnetization sequence was realized in 10 mT steps until no further observable decrease in magnet-
ization intensity was detected. For each AF step, the magnetic field of each subsample was measured six times: 
once after single applications of the AF in the x, y, and z directions in succession, twice after applications in the 
x direction, twice after applications in the y direction, and once after an application in the z direction. Moment 
estimates were then obtained for each magnetic map and all six moments were averaged to reduce the effects of 
gyroremanent magnetization (GRM) and anhysteretic remanent magnetization (ARM) noise during AF demag-
netization. Figure 17a shows the magnetic map of subsample DOC 5A (left) after undergoing the last application 
of AF in the z direction at the 30 mT AF step, which clearly exhibits multipolar behavior, together with model 
maps (top row) and residual maps (bottom row) for select model degrees using a regularization factor LREG of 2. 
Convergence of the moment estimate for this map was achieved for model degrees above 4 (Figures 17b and 17c). 
At model degree 7, residuals are essentially uncorrelated (Figure  17a). Further increasing the model degree 
caused the moment estimate to begin diverging, owing to the effects of noise on the estimates, as discussed in 
Sections 2.3.4, 3.2, and 3.5. Given the somewhat poor SNRs in those maps (estimated to range from ∼10:1 down 
to ∼2:1), this was expected to happen for such higher model degrees. Subsample DOC 6A was similarly analyzed, 
but because the average SNR was lower, we used different values for the regularization factor LREG (2 and 4) to 
improve stability and accuracy, depending on the specific map being processed.

Based on these demagnetization data, we constructed a plot of the orthographic projections of the net moment 
vector and identified a magnetization component in the 0–30 mT AF range using principal component analy-
sis (PCA) (Borlina et al., 2021). After obtaining directional estimates for the components identified in all four 
subsamples, we compared the directions and associated maximum angular deviations (MADs) using an equal-
area plot (Figure  17d). Notice the very good agreement in magnetization direction for the two fragments of 
each chondrule and also the difference in magnetization direction between the two chondrules. These moment 
estimates for the multipolar subsamples represent a refinement over the estimates shown in Borlina et al. (2021), 
which were obtained using upward continuation at an earlier stage of the development of our technique and 
utilized different solution selection criteria. Note that data in this figure are plotted with the orientation conven-
tion used in Borlina et  al.  (2021) to facilitate comparison. Given the weak magnetization of the chondrules 
measured in the demagnetization sequences (ranging from 10 −12 to 10 −13 Am 2 for the multipolar subsamples), 
this analysis relied exclusively on magnetic microscopy and on the ability to accurately estimate net moments 
from magnetic field maps, illustrating how valuable our net moment estimation technique can be in helping tackle 
novel science questions.
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Figure 17.
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5.  Conclusions
Moment estimation with multipole fitting greatly expands the category of geological samples suitable for ultra-
high sensitivity moment magnetometry analysis. We summarize below the main characteristics and advantages 
of our multipole fitting technique:

•	 �By increasing the complexity of the source model through spherical harmonic multipole expansions, we can 
accurately estimate the net moment of complex magnetization patterns even under adverse noise conditions.

•	 �This is particularly critical for very high spatial resolution magnetic microscopes (e.g., the QDM and scan-
ning MTJ microscope) for which maps of isolated features often deviate significantly from that of a magnetic 
dipole.

•	 �However, indetermination of the origin location for the multipole expansion leads to an intricate mixed 
linear-nonlinear inverse problem.

•	 �Increasing the degrees of freedom in our model results in higher sensitivity to imperfections in the magnetic 
data, such as noise and amplitude offsets.

•	 �This increased sensitivity is partly overcome by implementing regularization strategies based on SVD trunca-
tion so as to yield satisfactorily accurate solutions while stabilizing the moment estimates.

•	 �Picking an optimal or near-optimal solution among the moment estimates produced by the technique requires 
judicious analysis of changes in the estimated moments and in residuals as model degrees are increased.

•	 �We have successfully tested the technique with synthetic and experimental data and applied it to novel paleo-
magnetic studies of terrestrial and extraterrestrial rocks.

Some of the limitations of the technique are as follows:

•	 �Decreased capability for estimating moments of extended sources and sources with high aspect ratios, which 
may require high model degrees due to the pointwise and symmetric nature of the multipole expansion [each 
multipole can be interpreted as a discrete set of dipoles at very close proximity (Wikswo & Swinney, 1985)].

•	 �Longer computational times for larger maps (>100 × 100 measurements) and higher degrees (>15).
•	 �Higher sensitivity to imperfections in the data, such as noise and amplitude offset, makes it unfeasible to 

use a high truncation point (e.g., >12) of the multipole expansion in some situations. Nevertheless, moment 
estimates may still be obtained by introducing some amount of upward continuation on the magnetic data 
(typically by less than 2x the original sensor-to-sample distance).

•	 �Existence of multiple solution candidates in a few situations, requiring careful manual inspection of the results 
to pick out the most promising one or to average the estimates obtained.

Figure 17.  Demagnetization data and paleodirectional data for mutually oriented subsamples of two dusty-olivine bearing chondrules (DOC 5 and DOC 6) extracted 
from CO carbonaceous chondrite meteorite Dominion Range 08006 (Borlina et al., 2021). Each chondrule was fragmented into two pieces (named 5A and 5B, and 6A 
and 6B) to assess the unidirectionality of its magnetization and all 4 subsamples were measured using the superconducting quantum interference device microscope in 
the Massachusetts Institute of Technology Paleomagnetism Laboratory while undergoing progressive alternating-field (AF) demagnetization in 10 mT steps. For each 
AF step, the magnetic field of each subsample was measured six times: once after single applications of the AF in the x, y, and z directions in succession, twice after 
applications in the x direction, twice after applications in the y direction, and once after an application in the z direction. The moments associated with each set of 6 
maps were then averaged to reduce the effects of spurious gyroremanent magnetization (GRM). Subsamples DOC 5A and DOC 6A were noticeable non-dipolar and 
were analyzed using our net moment multipole expansion method. Subsamples DOC 5B and DOC 6B were nearly dipolar, allowing for a single-dipole fitting moment 
estimation method (Lima & Weiss, 2016) to be used. (a) Bz map of multipolar sample DOC 5A (left) after undergoing the last AF application in the z direction at the 
30 mT step (∼300 μm sensor-to-sample distance). Top row shows the model field maps for select model degrees and bottom row shows the corresponding residual maps 
in each case. (b) Magnitude (left) and (c) direction (right) of the moment estimates as a function of model degree. Notice the convergence of the estimates past degree 4. 
Circle outlines indicate degrees for which maps are shown in (a, d) Directions and maximum angular deviations (MADs) for the high-coercivity components identified 
via principal component analysis (PCA) in the 2 multipolar subsamples (DOC 5A and DOC 6A) and in the 2 dipolar subsamples (DOC 5B and DOC 6B). Notice the 
very good agreement in direction between subsamples of the same chondrule and also the directional mismatch between chondrules, both supporting the hypothesis of 
ancient remanent magnetizations of thermal origin that were preserved in the meteorite (Borlina et al., 2021).
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Data Availability Statement
All synthetic and experimental replication data, as well as MATLAB code implementing the technique, are avail-
able at the Harvard Dataverse: https://doi.org/10.7910/DVN/N4MMCT (Lima, 2023).
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Introduction 
In this document, we have collected results and ancillary derivations that further support the results 
shown in the main text and provide a deeper explanation for some statements that readers unfamiliar 
with certain aspects of the technique may find useful.  
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Text S1: Factors Contributing to Upward Continuation Error 

Two main factors contribute to errors in the calculation of upward continuation of planar magnetic 
maps: limited mapping area and finite spatial sampling resolution. Given that such errors may impact 
moment estimation accuracy, we model their effect on the magnetic data and briefly discuss ways to 
mitigate them.  

We represent the effect of a finite mapping area by a two-dimensional characteristic function χ, which 
is equal to 1 inside the mapping area and 0 outside: 

   ( , , ) ( , , ) ( , )z zB x y h B x y h x yχ= ⋅   , (S1) 

where zB  denotes the magnetic data cropped to the mapping area (i.e., the field map). Calculation of 

upward continuation is exact when the magnetic data are known over the whole plane (Blakely, 1996). 

However, in practice that is never achieved and instead we only have access to zB .  

The impact of this on the calculation of the upward continuation can be modeled analytically. We 
begin by expressing the field data upward continued to the plane z h h= + ∆  as the convolution of the 
original field data (known over the whole plane z h= ) with the Poisson kernel, shown in square brackets: 
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  (S2) 

where ∗ stands for the (two-dimensional) convolution operation, χ  denotes the complement of χ (i.e., 

zero inside the mapping area and one outside) such that χ χ+  is the unit constant function and 

( , , ) ( , , ) ( , )z zB x y h B x y h x yχ= ⋅  represents  the magnetic data outside the mapping area.  The left term in 

curly braces is the cropped data upward continued and the right term in curly braces is all the data outside 
the mapping area upward continued. Equation (S2) then allows us to express the error introduced by using 
cropped magnetic data in the calculation of the upward continuation: 
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 (S3) 

Thus, the measured magnetic data upward continued to a sensor-to-sample distance of h h+ ∆  is given by 
the exact field at h h+ ∆  plus an error term E that depends on the data that were not measured   
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 (S4) 

Given that the Poisson kernel is a single-peaked function whose width depends on the amount of 
upward continuation h∆ , (S4) tells us that the error will generally be higher at the edges of the field map 
and decrease towards the center. In addition, the error strongly depends on the magnitude of the field at 

the edges of the map: the larger the mapping area, the smaller ( , , )zB x y h  and the closer ( , , )zB x y h h+ ∆  is 

to the actual field at h h+ ∆ . Similarly, the smaller h∆ , the narrower the Poisson kernel becomes and the 
smaller the error is. 

 How much of the error “bleeds” into the center of the map is determined by h∆ , which regulates the 
width of the Poisson kernel. As a rule of thumb, the larger the mapping area the higher the degree of 
upward continuation that can be adequately performed. Clearly, the mapping area is also limited by noise 
contamination, as measuring past a certain distance from the center will not yield any relevant magnetic 
data once the magnetic signal drops below the sensor’s noise floor. This overall behavior highlights the 
importance of mapping the field beyond the region containing magnetic sources, whenever possible, so 
as to adequately capture the field decay and make the field strength as small as possible at the edges of 
the magnetic map.  For the typical mapping areas used in SQUID microscopy, such as the ones shown in 
this paper, upward continuing the data by an amount greater than one or two times the sensor-to-sample 
distance may often lead to significant error in moment estimation.  

The inaccuracies associated with finite step sizes are more easily understood in the Fourier domain. 
In this case, convolution operations are replaced by multiplications and the Poisson kernel takes its 
familiar expression in the Fourier domain: 

  ˆ ˆ( , , ) ( , , ) h k
z x y z x yB k k h h B k k h e−∆+ ∆ = ⋅  , (S5) 

where the hat symbol denotes a two-dimensional Fourier transform performed on the x and y variables 

and 2 2
x yk k k= + . This expression is exact when the Fourier transform is computed over the whole kx-ky 

spatial frequency plane. This, however, corresponds to an infinitesimal step size, which is obviously not 
attainable in practice. Thus, (S5) is effectively only computed in a rectangular region R of the spatial 
frequency plane determined by the mapping step size 

  2 2: ,x yR k k
x y
π π

≤ ≤
∆ ∆

 , (S6) 

where ∆x and ∆y are the step sizes in the x and y directions, respectively, which are typically equal. Owing 
to the exponential decay of the upward continuation low-pass filter and the band-limited characteristics 
of the spectrum of the field map, such inaccuracies are ordinarily of secondary importance, unless coarse 
spatial sampling is used for some reason.  
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We use a set of 50,000 dipoles with arbitrary orientations randomly distributed in a 100 µm cubic volume 
to illustrate how the mapping area effects prevail under normal conditions (Fig. S10).  Notice that this 
error is concentrated on the edges of the map, as predicted by (S4), accounting for over 99.5% of the 
overall inaccuracies in the upward continuation in this case.  

 

Text S2: On the Density of Multipolar Fields 

S2.1: Notation and preliminaries 

We let S  be a connected, compact subset of 3
 , which we think of as being the sample. We further 

let 2O ⊂   be a planar bounded connected Lipschitz-regular open set (that is, whose boundary is locally 

a Lipschitz graph), and we put : { }Q O h= ×   which is a compact subset of the horizontal plane 2 { }h×  

in 3
 ,  where 0h >  is the “height” at which measurements are performed and Q  the area where these 

measurements are taken. We assume throughout that 3
1 2 3 3{ ( , , ) : }tS x x x x x h ε⊂ = ∈ ≤ −   for some 

0ε > ; namely, that Q  lies “above” S . Here and below, a superscript “t” means “transpose”.  

We need a few functional spaces on n
 , where n  will be set to 2 or 3. We write ( )C∞ Ω   for the 

space of smooth functions on an open set nΩ ⊂   having continuous derivatives of any order, and 

0 ( )C∞ Ω  for the space of smooth functions with compact support in Ω . Recall that distributions on Ω  

are linear forms on 0 ( )C∞ Ω  that are continuous for a certain topology, the precise definition of which 

may be found in (Schwartz, 1950, Sec. I.2).  The duality product between distributions and functions will 
be denoted with brackets, as in ,ϕ〈 〉d . The support of a distribution d  on Ω , denoted by supp d ,  is the 

largest closed set E ⊂ Ω   such that ( ) 0ϕ =d  for all ϕ  in 0 ( )C E∞ Ω . When supp d  is compact in Ω , 

we can find 0 ( )Cϕ ∞∈ Ω  which is identically 1 on supp d and then, for ( )f C∞∈ Ω , the value of , fϕ〈 〉d  

does not depend on the exact choice of such a ϕ . Hence, a distribution with compact support acts 

naturally on C∞ -smooth functions even if they do not have compact support, and may be regarded as a 
distribution on any open set containing its support.  

For 1( , , )nα α α=   a multi-index (that is: a n -tuple of nonnegative integers), we put α∂  for the 

differential operator 1

1 3

n
x x

αα∂ ∂ , where 1( , , )t
nx x x=   displays the coordinates of nx ∈  and j

jx
α∂  

denotes the jα -th partial derivative with respect to the variable jx . The α -derivative of a distribution 

d  acts on 0 ( )Cϕ ∞∈ Ω   by | |, : ( 1) ,α α αϕ ϕ〈∂ 〉 = − 〈 ∂ 〉d d , where 1| |: nα α α= + +  is called the weight of 

α .  
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For any integer 0m > , the previous considerations extend at once to m
 -valued distributions, acting 

naturally on 0( ( ))mC∞ Ω  via the Euclidean scalar product. That is: for 1( , , )mD D=D    m
 -valued 

distribution and 1( , , )mf f=f    a m
 -valued function, we set , : ,j j

j
D f〈 〉 = 〈 〉∑D f  .  

Recall the familiar divergence operator, acting on n -vectors of differentiable quantities by 

1div( , , )
jn x j

j
a a a= ∂∑ , and the Newton kernel with pole at 3x ∈ , which is the function  

3: { }xN x →    defined by ( ) : 1/ (4 | |)xN y x yπ= − − ,  with | |x  to mean the Euclidean norm of x . 

For D  a 3
 -valued distribution in 3

 supported on S , we define its magnetic potential at a point 
3x S∈  by the formula: 

  3
1( )( ) : div , , ,

4 | |x y x
xx N N
xπ

−⋅Φ = = − ∇ =
−⋅

D D D D  , (S7) 

where we used the definition of distributional derivatives and the notation y∇  to indicate the gradient 

with respect to y ; here and below, a dot as in 3( )/ | |x x− ⋅ − ⋅  designates a dummy variable. In fact, ( )Φ D  

is the (distributional) solution to 

  div∆Φ = D  (S8) 

that vanishes at infinity, with 2
1 3:

jj x≤ ≤∆ = Σ ∂   to mean the Laplace operator.  

The magnetic field of D  is defined as the 3
 -valued vector field ( )b D  on 3 S  given by 

( ) 0: ( )µ= − ∇Φb D D  , where 0 4 cµ π= ×  with 7 110c H m− −=   and ∇  stands for the gradient. Standard 

calculus with distributions shows that (S7) is a smooth function of x  and that differentiation can be 
performed inside the duality bracket (Rudin, 1991, Theorem 6.35), therefore the j -th component of the 

magnetic field of 1 2 3( , , )D D D=D   at  3x S∈ can be rewritten as:  

  53
( )1[ ( )( )] : , 3 [ ] , 1 3
| || |j j j

xx c D x j
xx

 
  
 

− ⋅= − − −⋅ ≤ ≤
−⋅−⋅

b D D . (S9) 

Note that ( )Φ D  and the components of ( )b D  are harmonic functions on 3 S : this follows at once 

from (S8) and the fact that derivatives commute, taking into account that  D  is supported on S . 

A dipole is a 3
 -valued distribution of the form xδv  , where 3∈v    and xδ   is the Dirac mass at

3x ∈ . For 3α ∈  a multi-index with | | 0α >  , a multipole is a distribution of the form α∂ d  where d is 

a dipole. We speak of a α - multipole when we need to specifyα , and call | |α  the order of the multipole. 

Clearly, supp supp ( ) { }x x xαδ δ= ∂ =v v  . In the case of either a dipole or a multipole, we call v  the 

associated vector.  
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S2.2: Density of multipolar fields 

Let S
′  indicate the space of 3

 -valued distributions supported on S . By definition, the forward 

operator 2: ( )SA L Q′ →  maps a 3
 -valued distribution to the restriction on Q  of the vertical 

component of its field: ( )3 |
( ) : ( )]

Q
A =D b D . This is (an idealized version of) the measurement operator.  

With a slight abuse of notation, we continue to use the letter A  to designate the restriction of A  to 

various subspaces of S
′ . Since the distance d( , )Q S  from Q  to S  is strictly positive, it is obvious from 

(S9) that A  is indeed valued in 2 ( )L Q  (and even  in the space ( )C Q∞  of smooth functions on Q , 

meaning they are smooth in a neighborhood of Q ). Writing 1 3( )j je ≤ ≤  for the canonical basis of 3
  and 

using a dot to indicate the Euclidean scalar product, we also introduce the operator 

( )3* 2: ( ) ( )A L Q C S∞→ given by 

  * 0( )( ) : ( ) ( ) , ,
4

A x y x y dy x Sµ
π

Ψ = − Ψ − ∈∫ K  (S10) 

where 

  3 3 3
53 3( ) 3 .

| || | | |
e e x e xx x

xx x
 
 
 

⋅ ⋅
= − = ∇K  (S11) 

In view of (S11), a compact way of re-writing (S10) is 

  *
0 3

( )1( )( ) : ( )( ), ( ) ,
4 | |

yA x U e x U x dy
x y

ψ ψµ
π

ΨΨ = − ∇ ∇ ⋅ = −
−∫  (S12) 

and it follows from first principles that 

  * 2, , , ( ).A A L Qψ ψ ψ〈 〉 = 〈 〉 ∈D D  (S13) 

Indeed,  since A  and *A  are convolution operators by definition [see (S9) and (S10)], it follows from 

(Rudin, 1991, Theorem 6.35) that (S13) holds when 0 ( )C Oψ ∞∈ , and we can pass to the limit since the 

latter space is dense in 2 ( )L Q  while convergence of nψ  to ψ  in 2 ( )L Q  entails convergence of *
nA ψ   to 

*A ψ   together with all its derivatives, the convergence being uniform in a neighborhood of S ; this is 

enough to ensure convergence of * ,nA ψ〈 〉D  to * ,A ψ〈 〉D , because distributions with compact support 

have finite order (Rudin, 1991, Theorem 6.24). 

Let us now introduce the space ( )z  generated by all dipoles and multipoles of any order and 

arbitrary associated vector supported in a point z . As the derivatives (1/ | |)xα∂  are of the form 
2| | 1/ | |P x α

α
+ , where Pα   ranges over all homogeneous harmonic polynomials of degree | |α  when 

3α ∈  ranges over multi-indices of given weight (Axler et al., 2000, Theorem 5.25), and since the 
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restrictions to the unit sphere of homogeneous harmonic polynomials of degree k  are precisely the 
spherical harmonics of degree k  (Axler et al., 2000, p. 80) while magnetic fields are harmonic gradients 
(more precisely: gradients of a harmonic potential) outside the support of the distribution generating 
them, it follows from Atfeh et al.  (2010, Lemma 4) that magnetic fields of members of ( )z , when 

restricted to the unit sphere centered at z , are dense (with respect to any pL -norm, 1 p≤ ≤ ∞ ) in the 

space of restrictions to that sphere of all magnetic fields generated by a distribution compactly supported 
inside the unit ball centered at z . Using Kelvin transform and dilations, this density property extends 
easily on any sphere compactly containing both the support of the distributions generating the fields and 
the point z . 

Below, we prove a related density property for the normal component of the field, but in a planar 
context. 

Lemma S2.1.  For any z S∈ , the image ( )( )A z of ( )z  under A  is dense in 2 ( )L Q . 

Proof.   If the conclusion of the lemma is false, there is a nonzero function 2 ( )f L Q∈   which is orthogonal 

to ( )( )A z ;  i.e., such that 

  * | | * | | *0 , ( ( ) , ( ( 1) ( ), ( 1) ( )( )x x xf A A f A f A f xα α α α α αδ δ δ= 〈 ∂ 〉 = 〈 ∂ 〉 = − 〈∂ 〉 = − ∂ ⋅v v v v  (S14) 

for all multi-indices 3α ∈  and all  3∈v   ; in (S14), we used (S13) to get the second equality.  For  
3x Q∈  , let ( )Bf x   denote the right-hand side of (S10). Then, Bf coincides with *A f  on a 

neighborhood of S , and it is real analytic in 3 Q  because it is harmonic there (Axler et al., 2000, 

Theorem 1.28) [harmonicity is obvious from  (S12)].  As (S14) tells us that all the derivatives of *A f    

(therefore also of Bf vanish at x , we get that 0Bf ≡   by real analyticity. Now, if 2V ⊂   is  a non-

empty open set and if we let 3: {0}W V= × ⊂  , it follows from the discussion after Baratchart et al. 

(2019, Eq. (9)) that the restriction map ( )|W
f Bf   is injective. Hence 0f ≡ , a contradiction that 

proves our contention. 

 

Text S3: Magnetic Data from Both Sides of a Geological Sample 

Having magnetic data available from both the top and bottom sides of a sample may be 
advantageous for constraining inversions and separating magnetization components (Baratchart et al., 
2013; Egli & Heller, 2000; Pastore et al., 2022), which is potentially feasible in magnetic microscopy unlike 
in other applications (e.g., aeromagnetic surveys). In particular, magnetic data from both sides may 
significantly improve numerical issues observed in the computation of net moments. Whereas, in 
principle, it is possible to flip a sample over and obtain a field map of its bottom surface, in practice 
experimental constraints often make it difficult to use such data in an effective way. Accurate registration 
of the top and bottom field maps could be very hard to achieve without adding magnetic and/or optical 
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markers to the sample mount, which need to be placed far enough to avoid interfering with the sample’s 
magnetic field and increase sample preparation and measurement times. In addition, significant 
differences in spatial resolution and moment sensitivity between the top and bottom maps are frequently 
experienced because geological samples are usually mounted on glass or quartz substrates owing to their 
fragile nature when polished down to 100 µm or less. Therefore, when mapping the sample’s bottom 
surface, the thickness of the substrate adds to the nominal sensor-to-sample distance, which may increase 
the latter by >100 times (the smaller the nominal sensor-to-sample distance the more pronounced those 
differences are). Lastly, precise estimates of the difference in effective sensor-to-sample distance 
between the two sides are needed to build an expanded matrix A that incorporates information from the 
bottom side of the sample.  

In this paper, we assume that only field data from the top side of the sample is available. 
Additional data from the bottom side, if reliably obtainable, would only help improve accuracy of net 
moment estimates. In this case, a straightforward way to compute net moment estimates from two-sided 
data would consist of “stacking” in vector b the magnetic data measured from the top and bottom sides 
and expanding matrix A accordingly, yielding a system with 2K  linear equations and 2 2N N+  unknowns. 
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Figure S1.  Effect of the regularization parameter LREG on the ability of the model to reproduce the data. Introducing 
regularization via SVD truncation stabilizes net moment estimates in the presence of noise at the expense of 
matching the field data. (A) Simulated Bz field map for Source A at a 25 µm sensor-to-sample distance (see Fig. 2A). 
(B) Model field map for increasing values of LREG, ranging from no truncation (LREG = 0) to the maximum truncation 
(LREG = 7), which corresponds to the preservation of only three coefficients and singular values/vectors. Notice the 
increasing residuals with larger degree of regularization introduced. Truncation of the SVD is not equivalent to 
truncating the multipole series, as each left singular vector represents a linear combination of multipole 
components. This is evidenced by the fact that the field map obtained for LREG = 7 is substantially different from the 
dipole components shown in Fig. 2B (i.e., the first three terms in the multipole expansion), exhibiting a noticeably 
different spatial decay; instead, it corresponds to a linear combination of the first three left singular vectors shown 
in Fig. 3.   
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Figure S2.  Net moment estimation results for Source B [two dipoles vertically spaced (i.e., in the Z direction), 
noiseless case; Table 2] with varying multipole model degrees. (A) Bz field maps simulated at four different sensor-
to-sample distances. Notice the apparent directional change as the magnetic field from the top dipole becomes less 
prominent with increasing sensor-to-sample distance and the map progressively reflects the net moment direction. 
(B) Net moment estimation error as a function of model degree for the maps shown in (A). Solid, dashed, and dotted 
black lines represent 10%, 5%, and 2% thresholds for the estimation error, respectively.  



12 
 

 

 

Figure S3.  Net moment estimation results for Source C (uniformly magnetized square thin slab without noise; Table 
2) with varying multipole model degree. (A) Bz field maps simulated at four different sensor-to-sample distances. (B) 
Net moment estimation error as a function of model degree for the maps shown in (A). Solid, dashed, and dotted 
black lines represent 10%, 5%, and 2% thresholds for the estimation error, respectively. 
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Figure S4.  Sensor-to-sample distance associated with each moment estimate for Source A (noiseless case), obtained 
with varying model degree, and the true sensor-to-sample distance (25 µm – see Fig. 5) represented by a black 
dashed line. As expected, our multipole expansion model does not recover the physical distance given that it places 
the origin of the expansion at the depth best suited to represent the data using a spherical harmonic multipole 
expansion truncated at degree N. 
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Figure S5.  Net moment estimation results for Source B with varying model degree for different signal-to-noise ratios 
(SNRs). (A) Simulated Bz field maps for a sensor-to-sample distance of 25 µm with SNR ranging from infinite 
(noiseless) down to 1:1. (B) Moment estimation error as a function of model degree for 5 different SNRs. Solid, 
dashed, and dotted black lines represent 10%, 5%, and 2% thresholds for the estimation error, respectively.  
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Figure S6.  Net moment estimation results for Source C with varying model degree for different signal-to-noise ratios 
(SNRs). (A) Simulated Bz field maps for a sensor-to-sample distance of 25 µm with SNR ranging from infinite 
(noiseless) down to 1:1. (B) Moment estimation error as a function of model degree for 5 different SNRs. Solid, 
dashed, and dotted black lines represent 10%, 5%, and 2% thresholds for the estimation error, respectively.  
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Figure S7.  Examples of typical solution norm versus residual norm plots (L-curves) obtained in this inverse problem. 
In this specific example, we show curves obtained for Source A corrupted with white noise (10:1 SNR) and mapped 
at a 25 µm sensor-to-sample distance using different SVD truncation factors LREG. Numbers on the curves 
correspond to model degrees, one of the three regularization factors acting simultaneously (LREG and origin location 
are the other two regularization factors). Notice that such curves often do not present the expected “L” shape in 
this problem and do not generally help in the selection of the optimal model degree. For this particular example, 
the optimal model degrees are: 6 (LREG = 0), 11/12 (LREG = 1), 7 (LREG = 2), 8 (LREG = 3), as determined by the minimum 
value of the moment estimation error. 
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Figure S8.  Low-critical- temperature SQUID microscope noise, measured with the MIT SQUID microscope at the 
most sensitive scale of the read-out electronics (i.e., largest noise amplification). (A) Map of the Bz field of a non-
magnetic sample (acid-washed Ge 124 quartz disc – 8 x 8 mm2 scanning area with 20 µm step size and a sensor-to-
sample distance of 180 µm), capturing several additive noise components: sensor noise, environmental noise, 
background contamination (e.g., dipolar features), stage motion noise, and quantization noise. Sub-regions of this 
field map were randomly chosen to generate the SQUID microscope noise added to synthetic maps. Each vertical 
scan line corresponds to a segment of the noise time series. Because magnetic measurements are not taken during 
the retrace scans, adjacent segments in the map are not subsequent in time, having instead a gap between them 
corresponding to the retrace time. As a consequence, the noise distribution differs along the scan direction versus 
along the transverse direction, with the latter corresponding to a very coarse sampling of the noise time series. (B) 
Distribution of noise amplitude values in the measured field map shown in (A), displaying a Gaussian (normal) 
behavior. (C) Power spectral density (PSD) of a continuous SQUID noise time series measured under similar 
conditions as the map shown in (A). A 1/f noise component dominates from DC until ∼0.5 Hz, beyond which the 
white noise dominates.  
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Figure S9.  Select individual maps of two spherules from Lonar crater, India, during AF demagnetization, and 
resulting combined maps used for estimating net moment with the multipole expansion model. (A) IRM (i.e., 
laboratory NRM) data. (B) AF 40 mT step data. (C) AF 140 mT step data. 
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Figure S10.  Modeling of the upward continuation error using a synthetic source comprised of a set of 50,000 dipoles 
with equal strength and arbitrary orientations randomly distributed in a 100 µm cubic volume. (A) (Left) Map of the 
field of the synthetic source at a sensor-to-sample distance of 25 µm. (Center) Map of the field of the synthetic 
source at a sensor-to-sample distance of 100 µm. (Right) Map of the field of the synthetic source shown in (A, left) 
upward continued by 75 µm, yielding an effective sensor-to-sample distance of 100 µm. (B) (Left) Difference 
between the true map (A, center) and the upward continued map (A, right) for a sensor-to-sample distance of 100 
µm. (Center) Error in the upward continuation predicted by (S4), based on the magnetic data outside the mapping 
area shown in (A, left). (Right) Difference between the true upward continuation error (left) and the predicted 
upward continuation error due to mapping area size (center), showing that the latter accounts for >99.5% of the 
true error in this upward continuation calculation. Upward continuation errors are relatively small in this case owing 
to the enlarged mapping area, demonstrating the importance of capturing most of the field decay in the original 
magnetic map prior to using upward continuation. Nevertheless, as observed in a similar case shown in Fig. 11, even 
small errors can noticeably impact net moment estimation for complex magnetizations.  
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Table S1.  Net magnetic moments obtained for a sample comprised of two impact melt spherules collected from 
Lonar crater, India, using two different estimation methods. (A) Individual magnetic moments for each spherule at 
different AF steps, estimated using a dipole-fitting technique. (B) Net magnetic moments obtained by: (i) adding the 
corresponding moments in (A) for each AF step (M dips, Inc Dips, Dec Dips); and (ii) using our multipole fitting 
estimation technique on combined maps of the spherules (M MultiP, Inc MultiP, Dec MultiP). Also shown are the 
multipole model degree used for the estimate in each AF step and the differences in magnitude and direction 
between estimates obtained with the dipole model and estimates obtained with the multipole model. 

(A)  

 

 

(B)

AF step M1 Inc1 Dec1 M2 Inc2 Dec2
0 2.49E-10 070.0 331.0 7.09E-11 -017.7 349.1
20 1.57E-10 070.2 333.3 5.44E-11 -017.9 348.7
40 4.08E-11 070.0 338.0 2.98E-11 -018.9 348.8
60 1.46E-11 072.2 343.1 1.94E-11 -019.7 347.5
80 5.15E-12 075.4 010.9 1.22E-11 -020.4 348.4

100 2.64E-12 062.2 018.3 7.23E-12 -020.4 347.4
140 1.83E-12 048.8 016.3 2.65E-12 -022.8 351.7
200 1.14E-12 038.0 020.6 1.48E-12 -016.9 359.8
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Table S2: Compilation of data type, noise type and SNR, regularization parameters, offset compensation, least-squares algorithm, and optimization 
algorithm used in each figure containing moment estimates in the main text and in this SI. †MATLAB’s algorithm mldivide provides faster 
computation of the solution to the linear least-squares problem but does not allow for the implementation of the regularization technique. 
‡MATLAB’s algorithm lsqnonlin yields faster convergence of the optimization but less consistent solution properties that allow us to pick out the 
optimal solution. 

    

Figure Data Type Noise SNR Regularization LREG 
Linear Least-

squares Algorithm† 
Offset 

Compensation 
Optimization 

Algorithm‡ 
2 Synthetic No ∞ No N/A mldivide No lsqnonlin 
3 Synthetic No ∞ No N/A mldivide No lsqnonlin 
4 Synthetic No ∞ No N/A mldivide No lsqnonlin 
5 Synthetic No ∞ No N/A mldivide No lsqnonlin 
6 Synthetic No ∞ No N/A mldivide No lsqnonlin 

7 Synthetic White noise ∞, 100:1, 
10:1, 3:1, 1:1 No N/A mldivide No lsqnonlin 

8 Synthetic White noise ∞, 100:1, 
10:1, 3:1, 1:1 No N/A mldivide No lsqnonlin 

9 Synthetic White noise 3:1 Yes 0 – 6  svds No lsqnonlin 
10 Synthetic White noise 3:1 Yes 0  svds No lsqnonlin 
11 Synthetic No ∞ No N/A mldivide No lsqnonlin 
12 Synthetic No ∞ No N/A mldivide Yes lsqnonlin 
13 Synthetic SM noise 3:1, 1:1 Yes 1 – 3  svds Yes fminunc 
14 Synthetic SM noise 3:1 Yes 0 – 3  svds Yes fminunc 
16 Experimental N/A N/A Yes 0 – 3 svds Yes fminunc 
17 Experimental N/A N/A Yes 1 – 4 svds Yes fminunc 
S2 Synthetic No ∞ No N/A mldivide No lsqnonlin 
S3 Synthetic No ∞ No N/A mldivide No lsqnonlin 

S4 Synthetic White noise ∞, 100:1, 
10:1, 3:1, 1:1 No N/A mldivide No lsqnonlin 

S5 Synthetic White noise ∞, 100:1, 
10:1, 3:1, 1:1 No N/A mldivide No lsqnonlin 

S6 Synthetic White noise 10:1 Yes 0 – 3 svds No fminunc 
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